首页> 外文期刊>Reliability Engineering & System Safety >Multiple predictor smoothing methods for sensitivity analysis: Example results
【24h】

Multiple predictor smoothing methods for sensitivity analysis: Example results

机译:用于灵敏度分析的多种预测变量平滑方法:示例结果

获取原文
获取原文并翻译 | 示例

摘要

The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (ⅰ) locally weighted regression (LOESS), (ⅱ) additive models, (ⅲ) projection pursuit regression, and (ⅳ) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.
机译:研究了在基于采样的复杂模型敏感性分析中使用多种预测变量平滑方法。具体而言,本演示文稿的第一部分介绍了基于平滑方法的灵敏度分析程序,该平滑方法采用以下非参数回归技术的逐步应用:(ⅰ)局部加权回归(LOESS),(ⅱ)加性模型,(ⅲ)投影追踪回归和(ⅳ)递归分区回归。在本报告的第二部分和结尾部分中,通过简单的测试问题和放射性废物处理设施(即废物隔离试点工厂)的性能评估结果,说明了所指示的过程。如示例说明所示,当模型输入之间存在非线性关系时,与基于线性回归,秩回归或二次回归的更传统的灵敏度分析程序相比,基于非参数回归技术的平滑程序的使用可获得更多的信息敏感性分析结果。并且存在模型预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号