首页> 外文期刊>Queueing systems >A functional central limit theorem for Markov additive arrival processes and its applications to queueing systems
【24h】

A functional central limit theorem for Markov additive arrival processes and its applications to queueing systems

机译:马尔可夫加性到达过程的函数中心极限定理及其在排队系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

We prove a functional central limit theorem for Markov additive arrival processes where the modulating Markov process has the transition rate matrix scaled up by n~α (α > 0) and the mean and variance of the arrival process are scaled up by n. It is applied to an infinite-server queue and a fork-join network with a non-exchangeable synchronization constraint, where in both systems both the arrival and service processes are modulated by a Markov process. We prove functional central limit theorems for the queue length processes in these systems joint with the arrival and departure processes, and characterize the transient and stationary distributions of the limit processes. We also observe that the limit processes possess a stochastic decomposition property.
机译:我们证明了马尔可夫加性到达过程的泛函中心极限定理,其中调制马尔可夫过程的跃迁速率矩阵放大了n〜α(α> 0),到达过程的均值和方差也放大了n。它适用于无限服务器队列和具有不可交换同步约束的fork-join网络,其中在两个系统中,到达过程和服务过程均由Markov过程进行调制。我们证明了这些系统中队列长度过程与到达和离开过程联合的功能中心极限定理,并刻画了极限过程的瞬时分布和平稳分布。我们还观察到极限过程具有随机分解性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号