首页> 外文期刊>Quality Control, Transactions >Variable Sub-Region Canonical Variate Analysis for Dynamic Process Monitoring
【24h】

Variable Sub-Region Canonical Variate Analysis for Dynamic Process Monitoring

机译:可变子区域的动态过程监控的规范变化分析

获取原文
获取原文并翻译 | 示例

摘要

When all process variables are used to establish one data-based model, some variables have little contributions to the model. When these variables are grouped into a small local variable set to develop a data-based model, their contributions will become large. It is called local variable characteristic. Standard canonical variate analysis (CVA) based process monitoring method doesn& x2019;t consider local process variable characteristic. To solve this problem, a variable sub-region based canonical variate analysis (V-CVA) is proposed for dynamic process monitoring by enhancing the information of local variables. The proposed method combines variable sub-region division and Bayesian fusion. First, standard CVA is performed by using all process variables. Then, K-means clustering is adopted to divide process variables into sub-regions based on the mutual information of process variables and canonical variables. For each variable sub-region, CVA is conducted to compute local process monitoring statistics. Finally, local statistics are fused to build ensemble statistics based on the idea of Bayesian inference. Compared with the standard CVA method, the proposed V-CVA method can emphasize the information of local variables, and has better monitoring performance in the canonical variable feature subspace and the prediction residual subspace. Two examples demonstrate the effectiveness of the proposed method.
机译:当所有过程变量用于建立一个基于数据的模型时,一些变量对模型几乎没有贡献。当这些变量被分组成一个小型局部变量集,以开发基于数据的模型,它们的贡献将变大。它被称为局部变量特征。基于标准规范变化(CVA)的过程监测方法并不考虑本地过程变量特征。为了解决这个问题,提出了通过增强局部变量的信息来提出基于亚区域的规范变化分析(V-CVA)。所提出的方法结合了可变子区域划分和贝叶斯融合。首先,通过使用所有过程变量执行标准CVA。然后,通过基于过程变量和规范变量的相互信息将过程变量划分为子区域的k-means群集。对于每个可变子区域,进行CVA以计算本地过程监视统计信息。最后,本地统计数据融合以基于贝叶斯推断的思想构建集合统计数据。与标准CVA方法相比,所提出的V-CVA方法可以强调局部变量的信息,并在规范变量特征子空间和预测残余子空间中具有更好的监视性能。两个例子证明了所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号