首页> 外文期刊>Quality Control, Transactions >Distributed Robust Adaptive Learning Coordination Control for High-Order Nonlinear Multi-Agent Systems With Input Saturation
【24h】

Distributed Robust Adaptive Learning Coordination Control for High-Order Nonlinear Multi-Agent Systems With Input Saturation

机译:具有输入饱和度的高阶非线性多智能体系的分布式鲁棒自适应学习协调控制

获取原文
获取原文并翻译 | 示例

摘要

The paper involves the distributed robust adaptive learning coordination control for high-order nonlinear multi-agent systems, where the leader has nonzero input and followers are subject to input saturation. To solve the problem, two initial assumptions concerning initial state learning and alignment initial condition are introduced, and the distributed learning protocols as well as parameter adaptive laws are designed. It should be noted that the protocols proposed under initial state learning containing the global information are not fully distributed, while the fully distributed protocols can be obtained by the alignment initial condition. Through the rigorous analysis, it is proved that each follower can perfectly track the leader on a finite time interval under both two assumptions. Then, the consensus results under the alignment initial condition are generalized to formation control and two simulation examples verify the correctness and feasibility of the proposed algorithms.
机译:本文涉及用于高阶非线性多算机系统的分布式鲁棒自适应学习协调控制,其中领导者具有非零输入和追随者的输入饱和度。为了解决问题,介绍了有关初始状态学习和对准初始条件的两个初始假设,并且设计了分布式学习协议以及参数自适应定律。应当注意,在包含全局信息的初始状态学习下提出的协议未完全分发,而完全分布式协议可以通过对齐初始条件获得。通过严格的分析,证明每个跟随器都可以在两个假设下完全跟踪领导者的有限时间间隔。然后,在对准初始条件下的共识结果是概括到形成控制,并且两个模拟示例验证了所提出的算法的正确性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号