首页> 外文期刊>Programming and Computer Software >Hybrid Model for Efficient Anomaly Detection in Short-timescale GWAC Light Curves and Similar Datasets
【24h】

Hybrid Model for Efficient Anomaly Detection in Short-timescale GWAC Light Curves and Similar Datasets

机译:用于短时间形空间GWAC光线和类似数据集中高效异常检测的混合模型

获取原文
获取原文并翻译 | 示例

摘要

Early warning during sky survey provides a crucial opportunity to detect low-mass, free-floating planets. In particular, to search short-timescale microlensing (ML) events from high-cadence and wide- field survey in real time, a hybrid method which combines ARIMA (Autoregressive Integrated Moving Average) with LSTM (Long-Short Time Memory) and GRU (Gated Recurrent Unit) recurrent neural networks (RNN) is presented to monitor all observed light curves and identify ML events at their early stages. Experimental results show that the hybrid models perform better in accuracy and less time consuming of adjusting parameters. ARIMA+LSTM and ARIMA+GRU can achieve improvement in accuracy by 14.5% and 13.2%, respectively. In the case of abnormal detection of light curves, GRU can achieve almost the same result as LSTM with less time by 8%. The hybrid models are also applied to MIT-BIH Arrhythmia Databases ECG dataset which has the similar abnormal pattern to ML. The experimental results from both data sets show that the hybrid model can save up to 40% of researchers' time in model adjusting and optimization to achieve 90% accuracy.
机译:天空调查期间的预警提供了检测低质量,自由浮球的关键机会。特别是,在实时搜索从高音和广泛调查的短时间的微透镜(ML)事件,将Arima(自回归综合移动平均线)与LSTM(长短时间内存)和GRU相结合的混合方法(所呈现的复发单元)报复的神经网络(RNN)被提出以监测所有观察到的光曲线并在其早期阶段识别ML事件。实验结果表明,混合模型的准确性更好,耗时较少的调整参数。 Arima + LSTM和Arima + Gru可以分别以14.5%和13.2%的准确性提高。在光曲线检测异常的情况下,GRU可以通过较少时间达到几乎与LSTM的结果达到8%。混合模型也应用于MIT-BIH心律失常数据库ECG数据集,其具有与ML类似的异常模式。两个数据集的实验结果表明,混合模型可以节省高达40%的研究人员在模型调整和优化中的时间,以实现90%的精度。

著录项

  • 来源
    《Programming and Computer Software》 |2019年第8期|600-610|共11页
  • 作者

    Sun Y.; Zhao Z.; Ma X.; Du Z.;

  • 作者单位

    Tsinghua Univ Dept Comp Sci & Technol Qinghua W Rd Beijing Peoples R China;

    Tsinghua Univ Dept Comp Sci & Technol Qinghua W Rd Beijing Peoples R China;

    Tsinghua Univ Dept Comp Sci & Technol Qinghua W Rd Beijing Peoples R China;

    Tsinghua Univ Dept Comp Sci & Technol Qinghua W Rd Beijing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号