首页> 外文期刊>Probabilistic engineering mechanics >Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys
【24h】

Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys

机译:飞机涡轮盘合金概率低周疲劳寿命预测和不确定性建模的贝叶斯框架

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic life prediction of aircraft turbine disks requires the modeling of multiple complex random phenomena. Through combining test data with technological knowledge available from theoretical analyses and/or previous experimental data, the Bayesian approach gives a more complete estimate and provides a formal updating approach that leads to better results, save time and cost. The present paper aims to develop a Bayesian framework for probabilistic low cycle fatigue (LCF) life prediction and quantify the uncertainty of material properties, total inputs and model uncertainty resulting from choices of different deterministic models in a LCF regime. Further, based on experimental data of turbine disk material (Ni-base superalloy CH4133) tested at various temperatures, the capabilities of the proposed Bayesian framework were verified using four fatigue models (the viscosity-based model, generalized damage parameter, Smith-Watson-Topper (SWT) and plastic strain energy density (PSED)). By updating the input parameters with new data, this Bayesian framework provides more valuable performance information and uncertainty bounds. The results showed that the predicted distributions of fatigue life agree well with the experimental data. Further it was shown that the viscosity-based model and the SWT model yield more satisfactory probabilistic life prediction results for GH4133 under different temperatures than the generalized damage parameter and PSED ones based on the same available knowledge.
机译:飞机涡轮盘的概率寿命预测需要对多个复杂的随机现象进行建模。通过将测试数据与可从理论分析和/或以前的实验数据中获得的技术知识相结合,贝叶斯方法给出了更完整的估计值,并提供了一种正式的更新方法,从而可以带来更好的结果,节省时间和成本。本文旨在为概率低周疲劳(LCF)寿命预测开发贝叶斯框架,并量化因选择LCF方案中的确定性模型而导致的材料性能,总输入量和模型不确定性的不确定性。此外,根据在各种温度下测试的涡轮盘材料(镍基高温合金CH4133)的实验数据,使用四个疲劳模型(基于粘度的模型,广义损伤参数,Smith-Watson-礼帽(SWT)和塑性应变能密度(PSED))。通过用新数据更新输入参数,此贝叶斯框架提供了更有价值的性能信息和不确定性范围。结果表明,疲劳寿命的预测分布与实验数据吻合良好。此外,基于相同的知识,基于粘度的模型和SWT模型在不同温度下对GH4133的概率寿命预测结果更为令人满意,而与广义损伤参数和PSED模型相比,该结果更令人满意。

著录项

  • 来源
    《Probabilistic engineering mechanics》 |2013年第10期|114-122|共9页
  • 作者单位

    School of Mechanical. Electronic, and Industrial Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue,West Hi-Tech Zone, Chengdu, Sichuan 611731, China;

    School of Mechanical. Electronic, and Industrial Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue,West Hi-Tech Zone, Chengdu, Sichuan 611731, China;

    Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA;

    Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA;

    School of Mechanical. Electronic, and Industrial Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue,West Hi-Tech Zone, Chengdu, Sichuan 611731, China;

    Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fatigue; Life prediction; Uncertainty; Disk; Bayesian inference;

    机译:疲劳;寿命预测;不确定;磁盘贝叶斯推断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号