首页> 外文期刊>Probabilistic engineering mechanics >Dimension-reduced FPK equation for additive white-noise excited nonlinear structures
【24h】

Dimension-reduced FPK equation for additive white-noise excited nonlinear structures

机译:加性白噪声激发非线性结构的降维FPK方程

获取原文
获取原文并翻译 | 示例

摘要

The joint probability density function (PDF) of response of a system subjected to Gaussian white noise satisfies the Fokker-Planck-Kolmogorov (FPK) equation, to which neither analytical nor numerical solution is readily available for high-dimensional nonlinear stochastic systems. In the present paper, for the systems excited by additive white noise, by invoking the concept of equivalent drift coefficient, a high-dimensional FPK equation is reduced to a one- or two-dimensional partial differential equation. The equivalent drift coefficient in the new lower-dimensional equation is proved to be the conditional mean function of the drift coefficient in the original high-dimensional FPK equation. The path integral solution is then employed to solve the dimension-reduced FPK-like equation. The response analyses for several systems excited by white noise are exemplified to illustrate the proposed method. The idea proposed in the present paper can be extended to multiplicative white noise and colored noise.
机译:高斯白噪声系统的响应的联合概率密度函数(PDF)满足Fokker-Planck-Kolmogorov(FPK)方程,对于高维非线性随机系统,解析和数值解都不容易获得。在本文中,对于由加性白噪声激发的系统,通过调用等效漂移系数的概念,将高维FPK方程简化为一维或二维偏微分方程。新的低维方程中的等效漂移系数被证明是原始高维FPK方程中漂移系数的条件均值函数。然后采用路径积分解来求解降维的FPK类方程。举例说明了几种受白噪声激发的系统的响应分析,以说明所提出的方法。本文提出的思想可以扩展到乘性白噪声和彩色噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号