首页> 外文期刊>IEEE Transactions on Power Systems >Optimal Design of an Islanded Microgrid With Load Shifting Mechanism Between Electrical and Thermal Energy Storage Systems
【24h】

Optimal Design of an Islanded Microgrid With Load Shifting Mechanism Between Electrical and Thermal Energy Storage Systems

机译:电气储能系统负载换档机制的最佳设计

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates an optimal sizing strategy for an islanded building microgrid. The microgrid composites a rooftop Photovoltaic (PV) system, a Battery Energy Storage System (BESS), an ice-Thermal Energy Storage System (ice-TESS), and loads. The loads are divided into two sets based on their ability to participate in demand response: i) Plugged Loads (PL) such as lights, and ii) Cooling Loads (CL) such as air-conditioners. The microgrid is islanded and loads must be supplied with local generation resources. Therefore, the BESS is deployed to offset the PV output's variability, and the absence of PV power supply at night time. However, relying only on the BESS incurs high stress and shortens the BESS's lifetime. Hence, we propose an optimal sizing strategy of the microgrid constituents, where the BESS coordinates with the ice-TESS to maintain the balance between generation and load in the microgrid. Nevertheless, the dispatch commands cannot swing freely between the two ESSs because of the difference in the type of energy delivery. Specifically, the BESS stores electric energy and can supply both PL and CL. On the other hand, the TESS can only supply the CL. Hence, the BESS-TESS coordination is also aided by a customer-friendly shifting and curtailment mechanism of CL. The design incorporates the effect of weather uncertainty on the PV output. Weather variations are imitated using Recurrent Neural Networks trained on 19-years of contiguous hourly weather data. After optimizing the sizes of the microgrid constituents, the optimal sizes are used in a detailed dynamic model of the system for a real-time simulation on the OPAL-RT platform. The validation results demonstrate the successful coordinated operation of the microgrid constituents which are cost-effective in sizing.
机译:本文调查了岛立建筑微电网的最佳规模策略。微电网复合材料屋顶光伏(PV)系统,电池储能系统(BESS),冰热能存储系统(冰)和负载。基于它们的参与需求响应的能力分为两组,即插入载荷(PL),例如灯和II)冷却负载(CL),例如空调。 MicroGrid是岛屿的,必须提供局部生成资源的负载。因此,部署了BESS以抵消PV输出的可变性,并且在夜间没有PV电源。然而,只依靠BESS引起高压力并缩短了贝丝的一生。因此,我们提出了一种优化的微电网成分的尺寸策略,其中BESS与冰冻坐标坐标,以维持微电网中的发电和负载之间的平衡。然而,由于能量传递类型的差异,调度命令不能在两个ESS之间自由摆动。具体地,BESS存储电能并可以提供PL和CL。另一方面,TESS只能提供CL。因此,BESS-TESS协调也通过CL的客户友好的转移和缩减机制来帮助解决。该设计包括天气不确定性对光伏输出的影响。使用19年的连续每小时天气数据培训的经常性神经网络模仿天气变化。在优化微电网成分的尺寸之后,最佳尺寸用于系统的详细动态模型,用于在欧宝-TT平台上进行实时仿真。验证结果证明了微电网成分的成功协调运行,其尺寸具有成本效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号