首页> 外文期刊>IEEE Transactions on Power Systems >A Hybrid Monte Carlo Simulation and Multi Label Classification Method for Composite System Reliability Evaluation
【24h】

A Hybrid Monte Carlo Simulation and Multi Label Classification Method for Composite System Reliability Evaluation

机译:组合系统可靠性评估的混合蒙特卡罗模拟与多标签分类混合方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach for reliability evaluation of composite power systems by combining Monte Carlo simulation and multi label k-nearest neighbor (MLKNN) algorithm. MLKNN is a classification technique in which target vector of each instance is assigned into multiple classes. In this paper, MLKNN is used to classify states (failure or success at system or bus level) of a complete power system without requiring optimal power flow (OPF) analysis, except in the training phase. As a result, the computational burden to perform OPF is reduced dramatically. For illustration, the proposed method is applied to the IEEE 30 BUS Test System and IEEE Reliability Test System. The obtained results from various case studies demonstrate that MLKNN based reliability evaluation provides promising results in both classification accuracy and computation time in evaluating the composite power system reliability.
机译:本文提出了一种新的方法,通过组合蒙特卡罗模拟和多标签k最近邻算法(MLKNN)进行复合电力系统可靠性评估。 MLKNN是一种分类技术,其中将每个实例的目标向量分配为多个类别。在本文中,MLKNN用于对完整电力系统的状态(系统或总线级别的故障或成功)进行分类,而无需进行最佳潮流(OPF)分析,除非在训练阶段。结果,大大降低了执行OPF的计算负担。为了说明,将所提出的方法应用于IEEE 30 BUS测试系统和IEEE可靠性测试系统。从各种案例研究中获得的结果表明,基于MLKNN的可靠性评估在评估复合电力系统的可靠性方面,在分类精度和计算时间方面都提供了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号