首页> 外文期刊>IEEE Transactions on Power Systems >Confidence intervals for neural network based short-term load forecasting
【24h】

Confidence intervals for neural network based short-term load forecasting

机译:基于神经网络的短期负荷预测置信区间

获取原文
获取原文并翻译 | 示例

摘要

Using traditional statistical models, like ARMA and multilinear regression, confidence intervals can be computed for the short-term electric load forecasting, assuming that the forecast errors are independent and Gaussian distributed. In this paper, the 1 to 24 steps ahead load forecasts are obtained through multilayer perceptrons trained by the backpropagation algorithm. Three techniques for the computation of confidence intervals for this neural network based short-term load forecasting are presented: (1) error output; (2) resampling; and (3) multilinear regression adapted to neural networks. A comparison of the three techniques is performed through simulations of online forecasting.
机译:使用传统的统计模型,例如ARMA和多线性回归,可以假设短期预测的电力误差是独立的并且具有高斯分布,可以为短期电力负荷预测计算置信区间。在本文中,通过反向传播算法训练的多层感知器获得了1到24步的提前负荷预测。提出了三种基于该神经网络的短期负荷预测的置信区间计算技术:(1)错误输出; (2)重采样; (3)适用于神经网络的多线性回归。通过在线预测的模拟对三种技术进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号