首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals
【24h】

Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals

机译:基于神经网络的预测区间的短期负荷和风电功率预测

获取原文
获取原文并翻译 | 示例

摘要

Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.
机译:电力系统正在从当今的集中式散装系统发展到更加分散的系统。风能和太阳能等可再生能源的渗透大大增加了电力系统的不确定性。准确的负荷预测变得更加复杂,但对于电力系统的管理而言却更为重要。用于生成负载需求的点预测的传统方法无法正确处理系统运行中的不确定性。为了量化与预测相关的潜在不确定性,本文采用了基于神经网络(NN)的方法来构建预测间隔(PI)。应用了一种新引入的方法,称为下上限估计(LUBE),并将其扩展为使用NN模型开发PI。提出了一种新的问题表述,它将主要的多目标问题转化为约束的单目标问题。与成本函数相比,此新公式更接近主要问题,并且参数更少。使用与变异算子集成的粒子群优化(PSO)解决了该问题。新加坡和新南威尔士州(澳大利亚)的电力需求以及首都风电场的风力发电都用于验证基于PSO的LUBE方法。比较结果表明,该方法可以在较短的时间内为负荷和风力发电预测构建高质量的PI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号