首页> 外文期刊>IEEE Transactions on Power Systems >Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method
【24h】

Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method

机译:基于神经网络和模糊推理的异常负荷条件下特殊日子的短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

Conventional artificial neural network (ANN) based short-term load forecasting techniques have limitations in their use on holidays. This is due to dissimilar load behaviors of holidays compared with those of ordinary weekdays during the year and to insufficiency of training patterns. The purpose of this paper is to propose a new short-term load forecasting method for special days in anomalous load conditions. These days include public holidays, consecutive holidays, and days preceding and following holidays. The proposed method uses a hybrid approach of ANN based technique and fuzzy inference method to forecast the hourly loads of special days. In this method, special days are classified into five different day-types. Five ANN models for each day-type are used to forecast the scaled load curves of special days, and two fuzzy inference models are used to forecast the maximum and the minimum loads of special days. Finally, the results of the ANN and the fuzzy inference models are combined to forecast the 24 hourly loads of special days. The proposed method was tested with actual load data of special days for the years of 1996-1997. The test results showed very accurate forecasting with the average percentage relative error of 1.78%.
机译:基于常规人工神经网络(ANN)的短期负荷预测技术在节假日使用中存在局限性。这是由于与一年中平日相比,假期的负荷行为不同,并且训练模式不足。本文的目的是针对异常负荷条件下的特殊日子,提出一种新的短期负荷预测方法。这些天包括公众假期,连续假期以及假期前后的日子。该方法采用基于神经网络的技术和模糊推理的混合方法来预测特殊日子的小时负荷。在这种方法中,特殊日分为五种不同的日类型。每个日类型的五个ANN模型用于预测特殊日的缩放负荷曲线,两个模糊推理模型用于预测特殊日的最大和最小负荷。最后,将人工神经网络的结果和模糊推理模型相结合,以预测特殊时段的24小时负荷。使用1996-1997年特殊日子的实际负荷数据测试了该方法。测试结果显示非常准确的预测,平均相对误差百分比为1.78%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号