首页> 外文期刊>Pattern Recognition Letters >Experimental study of a novel neuro--fuzzy system for on-line handwritten UNIPEN digit recognition
【24h】

Experimental study of a novel neuro--fuzzy system for on-line handwritten UNIPEN digit recognition

机译:用于在线手写UNIPEN数字识别的新型神经模糊系统的实验研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an on-line hand-printed character recognition system, tested on datasets produced by the UNIPEN project, thus ensuring sufficient dataset size, author-independence and a capacity for objective benchmarking. New preprocessing and segmentation methods are proposed in order to derive a sequence of strokes for each character, following suggestions of biological models for handwriting. Variants of a novel neuro-fuzzy system, FasArt (Fuzzy Adaptive System ART-based), are used for both clustering and classification. The first task assesses the quality of segmentation and feature extraction techniques, together with an analysis of Shannon entropy. Experimental results for classification of the train--r01--u02 UNIPEN dataset show real-time performance and a recognition rate of over 85/100, exceeding slightly Fuzzy ARTMAP performance, and 5% inferior to the rate achieved by humans.
机译:本文介绍了一种在线手工印刷的字符识别系统,该系统在UNIPEN项目生成的数据集上进行了测试,从而确保了足够的数据集大小,作者独立性和客观基准测试的能力。提出了新的预处理和分割方法,以便根据生物学模型的笔迹为每个字符得出一系列笔画。新型神经模糊系统FasArt(基于ART的模糊自适应系统)的变体用于聚类和分类。第一项任务是评估分割和特征提取技术的质量,并分析香农熵。对Train--r01--u02 UNIPEN数据集进行分类的实验结果表明,其实时性能和识别率超过85/100,超过了模糊的ARTMAP性能,并且比人类获得的识别率低5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号