首页> 外文期刊>Pattern recognition letters >On-line handwritten digit recognition based on trajectory and velocity modeling
【24h】

On-line handwritten digit recognition based on trajectory and velocity modeling

机译:基于轨迹和速度建模的在线手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

The handwriting is one of the most familiar communication media. Pen based interface combined with automatic handwriting recognition offers a very easy and natural input method. The handwritten signal is on-line collected via a digitizing device, and it is classified as one pre-specified set of characters. The main techniques applied in our work include two fields of research. The first one consists of the modeling system of handwriting. In this area, we developed a novel method of the handwritten trajectory modeling based on elliptic and Beta representation. The second part of our work shows the implementation of a classifier consisting of the Multi-Layers Perception of Neural Networks (MLPNN) developed in a fuzzy concept. The training process of the recognition system is based on an association of the Self Organization Maps (SOM) with Fuzzy K-Nearest Neighbor Algorithms (FKNNA). To test the performance of our system we build 30,000 Arabic digits. The global recognition rate obtained by our recognition system is about 95.08%.
机译:笔迹是最熟悉的通讯媒体之一。基于笔的界面与自动手写识别相结合,提供了一种非常简单自然的输入方法。手写信号通过数字化设备在线收集,并且被分类为一组预先指定的字符。在我们的工作中应用的主要技术包括两个研究领域。第一个由笔迹建模系统组成。在这一领域,我们开发了一种基于椭圆和Beta表示的手写轨迹建模的新方法。我们工作的第二部分显示了一个分类器的实现,该分类器由以模糊概念开发的神经网络多层感知器(MLPNN)组成。识别系统的训练过程基于自组织映射(SOM)与模糊K最近邻居算法(FKNNA)的关联。为了测试我们系统的性能,我们建立了30,000个阿拉伯数字。我们的识别系统获得的全球识别率约为95.08%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号