首页> 外文期刊>Pattern Recognition Letters >A neural-vision based approach to measure traffic queue parameters in real-time
【24h】

A neural-vision based approach to measure traffic queue parameters in real-time

机译:基于神经视觉的实时测量交通队列参数的方法

获取原文
获取原文并翻译 | 示例

摘要

The real-time measurement of queue parameters is required in many traffic situations such as accident and congestion monitoring and adjusting the timings of the traffic lights. Previous methods proposed by researchers for queue detection are based on traditional image processing algorithms. The method proposed here is based on applying the combination of edge detection and neural network algorithms. The edge detection technique is used to detect vehicles and estimate the motion, while neural network is used to measure the queue parameters. The neural network is trained for various road traffic conditions and is able to provide better results than the traditional image processing algorithms.
机译:在许多交通情况下,例如事故和交通拥堵监控以及调整交通信号灯的定时,都需要对队列参数进行实时测量。研究人员提出的用于队列检测的先前方法是基于传统的图像处理算法。这里提出的方法是基于结合边缘检测和神经网络算法的。边缘检测技术用于检测车辆并估计运动,而神经网络用于测量队列参数。该神经网络针对各种道路交通状况进行了训练,比传统的图像处理算法能够提供更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号