首页> 外文期刊>Pattern recognition letters >Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data
【24h】

Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data

机译:用于金融时间序列预测利用限制订单数据的时间物流神经袋 - 功能

获取原文
获取原文并翻译 | 示例

摘要

Time series forecasting is a crucial component of many important applications, ranging from forecasting the stock markets to energy load prediction. The high-dimensionality, velocity and variety of the data collected in many of these applications pose significant and unique challenges that must be carefully addressed for each of them. In this work, a novel Temporal Logistic Neural Bag-of-Features approach, that can be used to tackle these challenges, is proposed. The proposed method can be effectively combined with deep neural networks, leading to powerful deep learning models for time series analysis. However, combining existing BoF formulations with deep feature extractors pose significant challenges: the distribution of the input features is not stationary, tuning the hyper-parameters of the model can be especially difficult and the normalizations involved in the BoF model can cause significant instabilities during the training process. The proposed method is capable of overcoming these limitations by a employing a novel adaptive scaling mechanism and replacing the classical Gaussian-based density estimation involved in the regular BoF model with a logistic kernel. The effectiveness of the proposed approach is demonstrated using extensive experiments on a large-scale limit order book dataset that consists of more than 4 million limit orders.
机译:时间序列预测是许多重要应用的重要组成部分,从预测股票市场到能量负荷预测。这些应用中的许多数据收集的高度,速度和各种数据构成了必须为每个人仔细解决的重要和独特的挑战。在这项工作中,提出了一种新的颞型物流神经袋 - 特征方法,可以用于解决这些挑战。该方法可以有效地结合深度神经网络,导致强大的深度学习模型进行时间序列分析。但是,将现有的BOF配方与深度特征提取器构成显着挑战:输入功能的分布不静止,调整模型的超参数可能尤其困难,并且BOF模型中涉及的常规趋势可能会导致显着的不稳定性培训过程。所提出的方法能够通过采用新颖的自适应缩放机制来克服这些限制,并用逻辑内核代替常规BOF模型中涉及的经典高斯的密度估计。拟议方法的有效性在大型限制票据数据集上使用广泛的实验证明了由超过400万个限制订单组成的。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第8期|183-189|共7页
  • 作者单位

    Faculty of Information Technology and Communication Sciences Tampere University Finland School of Informatics Aristotle University of Thessaloniki Greece;

    School of Informatics Aristotle University of Thessaloniki Greece;

    Faculty of Information Technology and Communication Sciences Tampere University Finland;

    Faculty of Information Technology and Communication Sciences Tampere University Finland;

    Dept. of Engineering Electrical and Computer Engineering Aarhus University Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Limit order book data; Bag-of-Features; Time-series forecasting;

    机译:限制订单数据;袋 - 功能袋;时间系列预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号