首页> 外文期刊>Pattern recognition letters >RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation
【24h】

RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation

机译:Refineu-net:改进了U-Net,具有逐步的全球反馈和剩余注意力引导的医学图像分割的局部细化

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the recent advances in medical image segmentation using a fully convolutional network (FCN) called U-Net and its modified variants, we propose a novel improved FCN architecture called RefineU-Net. The proposed RefineU-Net consists of three modules: encoding module (EM), global refinement module (GRM) and local refinement module (LRM). EM is backboned by pretrained VGG-16 using ImageNet. GRM is proposed to generate intermediate layers in the skip connections in U-Net. It progressively upsamples the top side output of EM and fuses the resulted upsampled features with the side outputs of EM at each resolution level. Such fused features combine the global context information in shallow layers and the semantic information in deep layers for global refinement. Subsequently, to facilitate local refinement, LRM is proposed using residual attention gate (RAG) to generate discriminative attentive features to be concatenated with the decoded features in the expansive path of U-Net. Three modules are trained jointly in an end-to-end manner thereby both global and local refinement are performed complementarily. Extensive experiments conducted on four public datasets of polyp and skin lesion segmentation show the superiority of the proposed RefineU-Net to multiple state-of-the-art related methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:通过称为U-Net及其改进的变体的完全卷积网络(FCN),通过完全卷积的网络(FCN)的医学图像分割的最新进步是推进的,我们提出了一种名为Refineu-Net的新型改进的FCN架构。建议的refineu-net由三个模块组成:编码模块(EM),全局细化模块(GRM)和本地细化模块(LRM)。 EM由使用ImageNet的预磨料VGG-16表示如此如上所述。建议GRM在U-Net中的跳过连接中生成中间层。它逐渐上追随EM的顶侧输出,并使所产生的上采样的特征融合,并在每个分辨率水平处具有EM的侧输出。这种融合特征将全局上下文信息与浅层中的全局上下文信息组合在一起的全局细化的深层中的语义信息。随后,为了促进局部改进,使用残余注意栅极(RAG)提出LRM,以产生判别的分娩特征,以便在U-Net的膨胀路径中与解码特征连接。三个模块以端到端的方式共同培训,从而互补地进行全局和局部细化。在息肉和皮肤病变分割的四个公共数据集上进行的广泛实验表明,提出的Refineu-Net对多种最先进的相关方法的优势。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第10期|267-275|共9页
  • 作者单位

    ASTAR Inst Infocomm Res 1 Fusionopolis Way 21-01 Connexis South Tower Singapore 138632 Singapore;

    ASTAR Inst Infocomm Res 1 Fusionopolis Way 21-01 Connexis South Tower Singapore 138632 Singapore;

    ASTAR Inst Infocomm Res 1 Fusionopolis Way 21-01 Connexis South Tower Singapore 138632 Singapore;

    ASTAR Inst Infocomm Res 1 Fusionopolis Way 21-01 Connexis South Tower Singapore 138632 Singapore;

    ASTAR Inst Infocomm Res 1 Fusionopolis Way 21-01 Connexis South Tower Singapore 138632 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    U-Net; Medical image segmentation; Progressive global feedbacks; Local refinement; Residual attention gate;

    机译:U-Net;医学图像分割;逐步全球反馈;本地改进;剩余注意门;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号