首页> 外文期刊>Expert systems with applications >E-Res U-Net: An improved U-Net model for segmentation of muscle images
【24h】

E-Res U-Net: An improved U-Net model for segmentation of muscle images

机译:E-Res U-Net:一种改进的U-Net模型,用于分割肌肉图像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new semantic segmentation network called 'E-Res U-Net', to achieve better segmentation results of deep and superficial muscles in ultrasonic muscle images. This model is based on U-Net, and its structure has been modified to improve the performance of the algorithm. There are three aspects of improvement based on U-Net, including E-Res layer, dilated convolution module, and E-Res path. Additional experiments demonstrate that each designed module in our proposed network is effective, can improve the accuracy compared to the original U-Net. When compared with other algorithms which are state-of-the-art, the experimental result under the overall network structure is even more excellent.
机译:在本文中,我们提出了一个名为“E-Res U-Net”的新的语义分割网络,以实现超声波肌图像中深层和浅表肌肉的更好分割结果。 该模型基于U-Net,其结构已被修改以提高算法的性能。 基于U-Net的改进有三个方面,包括E-Res层,扩张的卷积模块和E-Res路径。 其他实验表明,我们所提出的网络中的每个设计模块都是有效的,与原始U-Net相比可以提高准确性。 与最先进的其他算法相比,整体网络结构下的实验结果更加优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号