首页> 外文期刊>Computers & Graphics >ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation
【24h】

ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation

机译:ANU-Net:基于关注的嵌套U-Net,用于利用医学图像分割的全分辨率功能

获取原文
获取原文并翻译 | 示例

摘要

Organ cancer have a high mortality rate. In order to help doctors diagnose and treat organ lesion, an automatic medical image segmentation model is urgently needed as manually segmentation is time-consuming and error-prone. However, automatic segmentation of target organ from medical images is a challenging task because of organ's uneven and irregular shapes. In this paper, we propose an attention-based nested segmentation network, named ANU-Net. Our proposed network has a deep supervised encoder-decoder architecture and a redesigned dense skip connection. ANU-Net introduces attention mechanism between nested convolutional blocks so that the features extracted at different levels can be merged with a task-related selection. Besides, we redesign a hybrid loss function combining with three kinds of losses to make full use of full resolution feature information. We evaluated proposed model on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Dataset and ISBI 2019 Combined Healthy Abdominal Organ Segmentation (CHAOS) Challenge. ANU-Net achieved very competitive performance for four kinds of medical image segmentation tasks. (C) 2020 Elsevier Ltd. All rights reserved.
机译:器官癌的死亡率很高。为了帮助医生诊断和治疗器官病变,迫切需要自动医学图像分割模型,因为手动分割是耗时和易于出错的。然而,由于器官的不均匀和不规则形状,来自医学图像的目标器官的自动分割是一个具有挑战性的任务。在本文中,我们提出了一个名为Anu-Net的关注的嵌套分段网络。我们所提出的网络具有深度监督的编码器解码器架构和重新设计的密集跳过连接。 Anu-Net在嵌套卷积块之间引入了注意力机制,以便可以将不同级别提取的功能与任务相关的选择合并。此外,我们重新设计了混合丢失功能,与三种损失结合起来,以充分利用全分辨率特征信息。我们评估了米奇2017年肝脏肿瘤分割(LITS)挑战数据集和ISBI 2019年挑战健康腹部器官细分(混乱)挑战的拟议模型。 ANU-Net对四种医学图像分割任务取得了非常竞争力的表现。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Computers & Graphics》 |2020年第8期|11-20|共10页
  • 作者单位

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China;

    Chinese Acad Sci Comp Network Informat Ctr Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attention mechanism; Nested U-Net; Medical image segmentation; Model pruning;

    机译:注意机制;嵌套U-Net;医学图像分割;模型修剪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号