首页> 外文期刊>Pattern recognition letters >Wasserstein GAN based on Autoencoder with back-translation for cross-lingual embedding mappings
【24h】

Wasserstein GAN based on Autoencoder with back-translation for cross-lingual embedding mappings

机译:基于自动编码器的Wasserstein GAN,具有反向翻译功能,可进行跨语言嵌入映射

获取原文
获取原文并翻译 | 示例

摘要

Recent works about learning cross-lingual word mappings (CWMs) focus on relaxing the requirement of bilingual signals through generative adversarial networks (GANs). GANs based models intend to enforce source embedding space to align target embedding space. However, existing GANs based models cannot exploit the underlying information of target-side for an alignment standard in the training, which may lead to some suboptimal results of CWMs. To address this problem, we propose a novel method, named Wasserstein GAN based on autoencoder with back-translation (ABWGAN) that can effectively exploit the target-side information and improve the performance of GANs based models. ABWGAN is an innovative combination of preliminary mappings learning and back-translation with target-side (BT-TS). In the proposed BT-TS, we back-translate target-side embeddings with preliminary CWMs to learn the final cross-lingual mappings, which enables to improve the quality of the preliminary mappings by reusing the target-side samples. Experimental results on three language pairs demonstrate the effectiveness of the proposed ABWGAN. (C) 2019 Elsevier B.V. All rights reserved.
机译:有关学习跨语言单词映射(CWM)的最新著作着重于通过生成对抗网络(GAN)放宽对双语信号的需求。基于GAN的模型旨在强制执行源嵌入空间以对齐目标嵌入空间。然而,现有的基于GAN的模型无法利用目标方的基础信息来进行训练中的对齐标准,这可能导致CWM的某些次优结果。为了解决这个问题,我们提出了一种新的方法,即基于带逆向翻译的自动编码器(ABWGAN)的Wasserstein GAN,该方法可以有效地利用目标端信息并提高基于GAN的模型的性能。 ABWGAN是初步映射学习和目标方翻译(BT-TS)的创新组合。在提出的BT-TS中,我们将目标端嵌入与原始CWM进行了反向翻译,以学习最终的跨语言映射,从而可以通过重用目标端样本来提高初始映射的质量。在三种语言对上的实验结果证明了所提出的ABWGAN的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第1期|311-316|共6页
  • 作者

  • 作者单位

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Anhui Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei 230601 Anhui Peoples R China;

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Anhui Peoples R China|Yangzhou Univ Sch Informat Engn Yangzhou 225009 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-lingual word embeddings; Bilingual lexicon induction; Wasserstein GAN; Back-translation;

    机译:跨语言单词嵌入;双语词典归纳;Wasserstein GAN;回译;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号