首页> 外文期刊>Pattern recognition letters >Classification of EEG signals to detect alcoholism using machine learning techniques
【24h】

Classification of EEG signals to detect alcoholism using machine learning techniques

机译:使用机器学习技术对脑电信号进行分类以检测酒精中毒

获取原文
获取原文并翻译 | 示例

摘要

The diagnosis of alcoholism is of great importance not only due to its effects on the individual and society but also the costs to the national health systems. Moreover, there are a large number of people suffering from this disease worldwide. Alcoholism has critical pathological effects on the liver, immune system, brain, and heart. Machine learning techniques are already well known for the classification of biosignals as they offer an efficient way to assist professionals in the automated diagnosis of various diseases, with high accuracy rates. This work presents the classification of alcoholic electroencephalographic (EEG) signals using Wavelet Packet Decomposition (WPD) and machine learning techniques. The experiments were realized using the minimum value, maximum value, mean, standard deviation, power value, the ratio of absolute mean and the absolute mean as features to feed the classifiers. These features were combined with the objective of exploring the feasibility of such features to classify alcoholism. The classification task was performed using Support Vector Machine (SVM), Optimum-Path Forest (OPF), Nave Bayes, k-Nearest Neighbors (k-NN) and Multi-layer Perceptron (MLP). The results showed maximum values of 99.87% for specificity, sensitivity, positive predictive value (PPV), and accuracy. These results were generated using the Nave Bayes classifier and the Biorthogonal wavelet family. A comparison with other techniques was performed aiming to validate our approach. The promising results, the inclusion of OPF classifier, and the specific combinations involving the chosen classifiers and wavelet families are the main contributions of this work. Finally, our strategy proved to be very effective in classifying alcoholic EEG signals. (C) 2019 Elsevier B.V. All rights reserved.
机译:酒精中毒的诊断非常重要,不仅因为它对个人和社会有影响,而且对国家卫生系统造成了损失。此外,全世界有很多人患有这种疾病。酒精中毒对肝脏,免疫系统,大脑和心脏具有重要的病理影响。机器学习技术对于生物信号的分类已经众所周知,因为它们提供了一种有效的方式来协助专业人员以高准确率自动诊断各种疾病。这项工作介绍了使用小波包分解(WPD)和机器学习技术对酒精性脑电图(EEG)信号的分类。以最小值,最大值,均值,标准差,功效值,绝对均值与绝对均值之比作为输入分类器的特征来实现实验。将这些特征与探索这些特征对酒精中毒进行分类的可行性进行了结合。分类任务是使用支持向量机(SVM),最佳路径森林(OPF),Nave Bayes,k最近邻居(k-NN)和多层感知器(MLP)执行的。结果显示,特异性,敏感性,阳性预测值(PPV)和准确性的最大值为99.87%。这些结果是使用Nave Bayes分类器和Biorthogonal小波家族生成的。为了验证我们的方法,与其他技术进行了比较。这项工作的主要贡献是有希望的结果,包括OPF分类器以及涉及所选分类器和小波族的特定组合。最后,我们的策略被证明对酒精性脑电信号分类非常有效。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号