首页> 外文期刊>Pattern recognition letters >Classification of EEG signals to detect alcoholism using machine learning techniques
【24h】

Classification of EEG signals to detect alcoholism using machine learning techniques

机译:使用机器学习技术检测酗酒的脑电图的分类

获取原文
获取原文并翻译 | 示例

摘要

The diagnosis of alcoholism is of great importance not only due to its effects on the individual and society but also the costs to the national health systems. Moreover, there are a large number of people suffering from this disease worldwide. Alcoholism has critical pathological effects on the liver, immune system, brain, and heart. Machine learning techniques are already well known for the classification of biosignals as they offer an efficient way to assist professionals in the automated diagnosis of various diseases, with high accuracy rates. This work presents the classification of alcoholic electroencephalographic (EEG) signals using Wavelet Packet Decomposition (WPD) and machine learning techniques. The experiments were realized using the minimum value, maximum value, mean, standard deviation, power value, the ratio of absolute mean and the absolute mean as features to feed the classifiers. These features were combined with the objective of exploring the feasibility of such features to classify alcoholism. The classification task was performed using Support Vector Machine (SVM), Optimum-Path Forest (OPF), Nave Bayes, k-Nearest Neighbors (k-NN) and Multi-layer Perceptron (MLP). The results showed maximum values of 99.87% for specificity, sensitivity, positive predictive value (PPV), and accuracy. These results were generated using the Nave Bayes classifier and the Biorthogonal wavelet family. A comparison with other techniques was performed aiming to validate our approach. The promising results, the inclusion of OPF classifier, and the specific combinations involving the chosen classifiers and wavelet families are the main contributions of this work. Finally, our strategy proved to be very effective in classifying alcoholic EEG signals. (C) 2019 Elsevier B.V. All rights reserved.
机译:酗酒的诊断是非常重要的,不仅是由于其对个人和社会的影响,而且是国家卫生系统的成本。此外,全世界都有大量患有这种疾病的人。酒精中毒对肝脏,免疫系统,脑和心脏对病理学作用有关。机器学习技术已经为生物资源的分类而闻名,因为它们提供了一种有效的方法,可以帮助专业人员在各种疾病的自动诊断中,具有高精度率。该工作介绍了使用小波分组分解(WPD)和机器学习技术的含酒术脑电图(EEG)信号的分类。使用最小值,最大值,平均值,标准偏差,功率值,绝对均值的比率,绝对意味着作为馈送分类器的特征的实验。这些特征与探索这些特征的可行性相结合,以分类酗酒。分类任务是使用支持向量机(SVM),最佳路径林(OPF),NAVE Bayes,K-Collest邻居(K-NN)和多层Perceptron(MLP)进行的。结果表明,特异性,灵敏度,阳性预测值(PPV)和准确性的最大值为99.87%。使用Nave Bayes分类器和Biorthogonal小波家族产生这些结果。执行与其他技术的比较旨在验证我们的方法。有希望的结果,包括opf分类器以及涉及所选择的分类器和小波家族的具体组合是这项工作的主要贡献。最后,我们的战略证明在分类酒精脑电图信号方面非常有效。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号