首页> 外文期刊>Pattern recognition letters >New spatial-organization-based scale and rotation invariant features for heterogeneous-content camera-based document image retrieval
【24h】

New spatial-organization-based scale and rotation invariant features for heterogeneous-content camera-based document image retrieval

机译:新的基于空间组织的缩放和旋转不变特征,用于基于异类内容相机的文档图像检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we extend our earlier proposed feature descriptor named Scale and Rotation Invariant Features (SRIF) and a camera-based heterogeneous-content information spotting system based on the latter. Through its capacity to manage heterogeneous content in document images, SRIF represents an extension to existing strategies such as LLAH, which are dedicated to textual document images. This paper proposes new extensions of SRIF based on geometrical constraints between pairs of nearest points around a key-point. SRIF has built-in capabilities to deal with feature point extraction errors which are introduced in camera-captured documents. To validate our method and compare it to the state-of-the-art, we have constructed three datasets of heterogeneous-content document images, along with the corresponding ground truths. Our experiment results confirm that SRIF outperforms the state-of-the-art in terms of processing time with equal or greater recall and precision for retrieval and spotting results. (c) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们扩展了我们先前提出的名为尺度和旋转不变特征(SRIF)的特征描述符,以及基于后者的基于相机的异类内容信息发现系统。通过管理文档图像中异构内容的能力,SRIF代表了现有策略(例如LLAH)的扩展,这些策略专用于文本文档图像。本文基于关键点附近的成对点之间的几何约束,提出了SRIF的新扩展。 SRIF具有内置功能来处理相机捕获的文档中引入的特征点提取错误。为了验证我们的方法并将其与最新技术进行比较,我们构建了三个内容不同的文档图像数据集,以及相应的基本事实。我们的实验结果证实,在处理时间方面,SRIF的性能优于最新技术,并且具有相同或更高的查全率和检索和发现结果的精度。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号