首页> 外文期刊>Image and Vision Computing >Rotation-invariant and scale-invariant Gabor features for texture image retrieval
【24h】

Rotation-invariant and scale-invariant Gabor features for texture image retrieval

机译:旋转不变和尺度不变的Gabor特征用于纹理图像检索

获取原文
获取原文并翻译 | 示例

摘要

Conventional Gabor representation and its extracted features often yield a fairly poor performance in retrieving the rotated and scaled versions of the texture image under query. To address this issue, existing methods exploit multiple stages of transformations for making rotation and/or scaling being invariant at the expense of high computational complexity and degraded retrieval performance. The latter is mainly due to the lost of image details after multiple transformations. In this paper, a rotation-invariant and a scale-invariant Gabor representations are proposed, where each representation only requires few summations on the conventional Gabor filter impulse responses. The optimum setting of the orientation parameter and scale parameter is experimentally determined over the Brodatz and MPEG-7 texture databases. Features are then extracted from these new representations for conducting rotation-invariant or scale-invariant texture image retrieval. Since the dimension of the new feature space is much reduced, this leads to a much smaller metadata storage space and faster on-line computation on the similarity measurement. Simulation results clearly show that our proposed invariant Gabor representations and their extracted invariant features significantly outperform the conventional Gabor representation approach for rotation-invariant and scale-invariant texture image retrieval.
机译:常规的Gabor表示及其提取的特征通常在检索要查询的纹理图像的旋转和缩放版本时产生相当差的性能。为了解决这个问题,现有方法利用变换的多个阶段来使旋转和/或缩放不变,以高计算复杂度和降低的检索性能为代价。后者主要是由于多次转换后图像细节的丢失。在本文中,提出了旋转不变和尺度不变的Gabor表示,其中每个表示仅需要对常规Gabor滤波器脉冲响应进行少量求和。方向参数和比例参数的最佳设置是通过Brodatz和MPEG-7纹理数据库实验确定的。然后从这些新表示中提取特征,以进行旋转不变或比例不变的纹理图像检索。由于新特征空间的维数大大减少,这导致元数据存储空间更小,并且相似性度量的在线计算速度更快。仿真结果清楚地表明,我们提出的不变Gabor表示及其提取的不变特征明显优于传统的Gabor表示方法,用于旋转不变和比例不变纹理图像检索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号