首页> 外文期刊>Pattern recognition letters >First Person Action Recognition via Two-stream ConvNet with Long-term Fusion Pooling
【24h】

First Person Action Recognition via Two-stream ConvNet with Long-term Fusion Pooling

机译:通过具有长期融合池的两流ConvNet进行第一人称动作识别

获取原文
获取原文并翻译 | 示例

摘要

First person action recognition is an active research area with increasingly popular wearable devices. Action classification for first person video (FPV) is more challenging than conventional action classification due to strong egocentric motions, frequent changes of viewpoints, and diverse global motion patterns. To tackle these challenges, we introduce a two-stream convolutional neural network that improves action recognition via long-term fusion pooling operators. The proposed method effectively captures the temporal structure of actions by leveraging a series of frame-wise features of both appearance and motion in actions. Our experiments validate the effect of the feature pooling operators, and show that the proposed method achieves state-of-the-art performance on standard action datasets. (c) 2018 Elsevier B.V. All rights reserved.
机译:第一人称动作识别是一个活跃的研究领域,具有越来越流行的可穿戴设备。第一人称视频(FPV)的动作分类比传统的动作分类更具挑战性,原因是强烈的以自我为中心的动作,频繁的视点变化以及各种全局动作模式。为了解决这些挑战,我们引入了两流式卷积神经网络,该网络通过长期的融合池算子来改善动作识别。所提出的方法通过利用动作中的外观和动作的一系列框架特征有效地捕获动作的时间结构。我们的实验验证了特征池算子的效果,并表明所提出的方法在标准动作数据集上达到了最先进的性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号