首页> 外文期刊>Pattern recognition letters >Learning spatial relations in object recognition
【24h】

Learning spatial relations in object recognition

机译:学习物体识别中的空间关系

获取原文
获取原文并翻译 | 示例

摘要

This paper studies two types of spatial relationships that can be learned from training examples for object recognition. The first one employs deformable relationships between object parts with a Gaussian model, while the second one describes pairwise relationships between pixel intensity values using Bayesian networks. We perform experiments on a human face dataset and a horse dataset, imposing the same amount of annotation of training data, which can be seen as sending knowledge to the learning algorithms. The result indicates that the Bayesian network method compares favorably to the deformable model, as it can capture long-distance stable relations in the object appearance. We also conclude that both methods are superior to strictly spatial matching by template and strictly non-spatial classifiers.
机译:本文研究了两种类型的空间关系,这些空间关系可以从用于物体识别的训练示例中学到。第一个使用高斯模型在对象部分之间使用可变形关系,而第二个使用贝叶斯网络描述像素强度值之间的成对关系。我们对人脸数据集和马数据集进行实验,对训练数据进行相同数量的注释,这可以看作是向学习算法发送知识。结果表明,贝叶斯网络方法与可变形模型具有良好的比较性,因为它可以捕获物体外观上的远距离稳定关系。我们还得出结论,这两种方法均优于模板和严格非空间分类器的严格空间匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号