首页> 外文期刊>Pattern recognition letters >MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach
【24h】

MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach

机译:基于快速空间约束核聚类的MRI脑图像分割和偏场校正

获取原文
获取原文并翻译 | 示例

摘要

A fast spatially constrained kernel clustering algorithm is proposed for segmenting medical magnetic resonance imaging (MRI) brain images and correcting intensity inhomogeneities known as bias field in MRI data. The algorithm using kernel technique implicitly maps image data to a higher dimensional kernel space in order to improve the separability of data and provide more potential for effectively segmenting MRI data. Based on the technique, a speed-up scheme for kernel clustering and an approach for correcting spurious intensity variation of MRI images have been implemented. The fast kernel clustering and bias field correcting benefit each other in an iterative matter and have dramatically reduced the time complexity of kernel clustering. The experiments on simulated brain phantoms and real clinical MRI data have shown that the proposed algorithm generally outperforms the corresponding traditional algorithms when segmenting MRI data corrupted by high noise and gray bias field.
机译:提出了一种快速的空间约束核聚类算法,用于分割医学磁共振成像(MRI)脑图像并校正强度不均匀性,称为MRI数据中的偏置场。使用内核技术的算法将图像数据隐式映射到更高维的内核空间,以提高数据的可分离性并为有效分割MRI数据提供更大的潜力。基于该技术,已经实现了用于核聚类的加速方案以及用于校正MRI图像的伪强度变化的方法。快速的内核聚类和偏差字段校正在迭代过程中彼此受益,并且大大减少了内核聚类的时间复杂性。在模拟的脑部模型和真实的临床MRI数据上进行的实验表明,在分割受高噪声和灰度偏置场破坏的MRI数据时,该算法通常优于相应的传统算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号