首页> 外文期刊>Computer Vision, IET >Hybrid segmentation method based on multi-scale Gaussian kernel fuzzy clustering with spatial bias correction and region-scalable fitting for breast US images
【24h】

Hybrid segmentation method based on multi-scale Gaussian kernel fuzzy clustering with spatial bias correction and region-scalable fitting for breast US images

机译:基于多尺度高斯核模糊聚类与空间偏差校正和区域尺度拟合的乳腺US图像混合分割方法

获取原文
获取原文并翻译 | 示例

摘要

Automated segmentation of tumors in breast ultrasound (US) images is challenging due to poor image quality, presence of speckle noise, shadowing effects and acoustic enhancement. This paper improves the multi-scale Gaussian kernel induced fuzzy C-means clustering method with spatial bias correction (MsGKFCM_S). Furthermore, it presents a hybrid segmentation method, using both the features of the MsGKFCM_S clustering and active contour driven by a region-scalable fitting energy function. The result obtained from the MsGKFCM_S method is utilised to initialise the contour that spreads to identify the estimated regions. It also helps to estimate the several controlling parameters of the curve evolution process. The proposed approach is evaluated on a database of 127 breast US images consisting of 75 malignant and 52 solid benign cases. The performance of proposed approach is compared with other related techniques, using performance measures such as Jaccard Index, dice similarity, shape similarity, Hausdroff difference, area difference, accuracy and F-measure. Results indicate that the proposed approach can successfully detect lesions in breast US images, with high accuracy of 97.889 and 97.513%. Moreover, the proposed approach has the capability of handling shadowing effects, acoustic enhancement and multiple lesions.
机译:由于图像质量差,斑点噪声,阴影效应和声学增强,在乳房超声(US)图像中自动分割肿瘤具有挑战性。本文通过空间偏差校正(MsGKFCM_S)改进了多尺度高斯核诱导的模糊C均值聚类方法。此外,它提出了一种混合分割方法,既利用MsGKFCM_S聚类的特征,又利用由区域可缩放拟合能量函数驱动的主动轮廓。从MsGKFCM_S方法获得的结果用于初始化扩展的轮廓,以识别估计的区域。它还有助于估计曲线演化过程的几个控制参数。该方法在包含75个恶性和52个良性良性病例的127个美国乳腺图像数据库上进行了评估。所提出的方法的性能与其他相关技术进行了比较,使用性能指标,例如Jaccard指数,骰子相似度,形状相似度,Hausdroff差异,面积差异,准确性和F量度。结果表明,所提出的方法可以成功地检测出乳房US图像中的病变,准确率高达97.889%和97.513%。此外,所提出的方法具有处理阴影效应,声学增强和多个损伤的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号