首页> 外文期刊>Pattern recognition letters >Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
【24h】

Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks

机译:单层前馈神经网络的正则化在线顺序学习算法

获取原文
获取原文并翻译 | 示例

摘要

Online learning algorithms have been preferred in many applications due to their ability to learn by the sequentially arriving data. One of the effective algorithms recently proposed for training single hidden-layer feedforward neural networks (SLFNs) is online sequential extreme learning machine (OS-ELM), which can learn data one-by-one or chunk-by-chunk at fixed or varying sizes. It is based on the ideas of extreme learning machine (ELM), in which the input weights and hidden layer biases are randomly chosen and then the output weights are determined by the pseudo-inverse operation. The learning speed of this algorithm is extremely high. However, it is not good to yield generalization models for noisy data and is difficult to initialize parameters in order to avoid singular and ill-posed problems. In this paper, we propose an improvement of OS-ELM based on the bi-objective optimization approach. It tries to minimize the empirical error and obtain small norm of network weight vector. Singular and ill-posed problems can be overcome by using the Tikhonov regularization. This approach is also able to learn data one-by-one or chunk-by-chunk. Experimental results show the better generalization performance of the proposed approach on benchmark datasets.
机译:在线学习算法因其能够按顺序到达的数据进行学习的能力而在许多应用中被首选。最近提出的用于训练单个隐藏层前馈神经网络(SLFN)的有效算法之一是在线顺序极限学习机(OS-ELM),它可以固定或可变地一对一或逐块学习数据。大小。它基于极限学习机(ELM)的思想,其中随机选择输入权重和隐藏层偏差,然后通过伪逆运算确定输出权重。该算法的学习速度极高。但是,对于嘈杂的数据产生泛化模型不是很好,并且为了避免出现奇异和不适的问题,很难初始化参数。在本文中,我们提出了基于双目标优化方法的OS-ELM的改进。它试图最小化经验误差并获得较小的网络权重向量范数。通过使用Tikhonov正则化可以克服奇异和不适的问题。这种方法还能够一对一或逐块学习数据。实验结果表明,该方法在基准数据集上具有更好的泛化性能。

著录项

  • 来源
    《Pattern recognition letters》 |2011年第14期|p.1930-1935|共6页
  • 作者

    Hieu Trung Huynh; Yonggwan Won;

  • 作者单位

    Department of Computer Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea,Faculty of Information Technology, HoChiMinh City University of Industry, 12 Nguyen Van Bao St., Go Vap Dist., HoChiMinh City,Viet Nam,NTT Institute of Hi-Technology, Nguyen Tat Thanh University, HoChiMinh City, Viet Nam;

    Department of Computer Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea,Korea Bio-IT Foundry Center&Gwangju, Chonnam National University, Gwangju 500-757, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    neural networks; online learning algorithm; ELM; OS-ELM; ReOS-ELM; multiobjective training algorithms;

    机译:神经网络;在线学习算法;榆树;OS-ELM;ReOS-ELM;多目标训练算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号