首页> 外文期刊>Pattern recognition letters >Adaptive pixon represented segmentation (APRS) for 3D MR brain images based on mean shift and Markov random fields
【24h】

Adaptive pixon represented segmentation (APRS) for 3D MR brain images based on mean shift and Markov random fields

机译:基于均值漂移和Markov随机场的3D MR大脑图像的自适应像素表示分割(APRS)

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we proposed an adaptive pixon represented segmentation (APRS) algorithm for 3D magnetic resonance (MR) brain images. Different from traditional method, an adaptive mean shift algorithm was adopted to adaptively smooth the query image and create a pixon-based image representation. Then K-means algorithm was employed to provide an initial segmentation by classifying the pixons in image into a predefined number of tissue classes. By using this segmentation as initialization, expectation-maximization (EM) iterations composed of bias correction, a priori digital brain atlas information, and Markov random field (MRF) segmentation were processed. Pixons were assigned with final labels when the algorithm converges. The adoption of bias correction and brain atlas made the current method more suitable for brain image segmentation than the previous pixon based segmentation algorithm. The proposed method was validated on both simulated normal brain images from BrainWeb and real brain images from the IBSR public dataset. Compared with some other popular MRI segmentation methods, the proposed method exhibited a higher degree of accuracy in segmenting both simulated and real 3D MRI brain data. The experimental results were numerically assessed using Dice and Tanimoto coefficients.
机译:在本文中,我们为3D磁共振(MR)脑图像提出了一种自适应像素代表分割(APRS)算法。与传统方法不同,采用自适应均值漂移算法对查询图像进行自适应平滑处理,并创建基于像素的图像表示。然后,采用K均值算法,通过将图像中的皮克斯分类为预定义数量的组织类别来提供初始分割。通过使用这种分割作为初始化,处理了由偏差校正,先验数字脑图集信息和马尔可夫随机场(MRF)分割组成的期望最大化(EM)迭代。当算法收敛时,为象素分配最终标签。偏倚校正和脑图谱的采用使当前方法比以前的基于pixon的分割算法更适用于脑图像分割。在来自BrainWeb的模拟正常大脑图像和来自IBSR公共数据集的真实大脑图像上均验证了该方法的有效性。与其他一些流行的MRI分割方法相比,该方法在分割模拟和真实3D MRI脑数据方面显示出更高的准确性。使用Dice和Tanimoto系数对实验结果进行了数值评估。

著录项

  • 来源
    《Pattern recognition letters》 |2011年第7期|p.1036-1043|共8页
  • 作者单位

    Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China,INRIA, VisAGeS Unit/Project, IR1SA F-35042 Rennes, France,University of Rennes I - CNRS UMR 6074, IRISA, F-35042 Rennes, France,INSERM, VisACeS U746 Unit/Project, IRISA F-35042 Rennes, France;

    INRIA, VisAGeS Unit/Project, IR1SA F-35042 Rennes, France,University of Rennes I - CNRS UMR 6074, IRISA, F-35042 Rennes, France,INSERM, VisACeS U746 Unit/Project, IRISA F-35042 Rennes, France;

    Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China,Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;

    National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China;

    INRIA, VisAGeS Unit/Project, IR1SA F-35042 Rennes, France,University of Rennes I - CNRS UMR 6074, IRISA, F-35042 Rennes, France,INSERM, VisACeS U746 Unit/Project, IRISA F-35042 Rennes, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    mri segmentation; markov random field; adaptive mean shift; pixon-representation; em algorithm;

    机译:mri分割;马尔可夫随机场;自适应均值漂移;皮克森表示;em算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号