首页> 外文期刊>Image and Vision Computing >A novel pixon-representation for image segmentation based on Markov random field
【24h】

A novel pixon-representation for image segmentation based on Markov random field

机译:基于马尔可夫随机场的新型像素分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a pixon-based image representation is proposed, which is a set of disjoint regions with variable shape and size, named pixon. These pixons combined with their attributes and adjacencies construct a graph, which represents the observed image. A Markov random field (MRF) model-based image segmentation approach using pixon-representation is then proposed. Compared with previous work on region-based and pixon-based segmentation methods, the present method has some remarkable improvements over them. Firstly, a set of significant attributes of pixons and edges are introduced into the pixon-representation. These attributes are integrated into the MRF model and the Bayesian framework to obtain a weighted pixon-based algorithm. Secondly, a criterion of GOOD pixon-representation is presented and a fast QuadTree combination (FQJC) algorithm is proposed to extract the good pixon-representation. The experimental results demonstrate that our pixon-based algorithm performs fairly well while reduces the computational cost sharply compared with the pixel-based method.
机译:本文提出了一种基于象素的图像表示方法,它是一组形状和大小可变的不相交区域的集合,称为象素。这些像素结合其属性和邻接关系构成一个图形,该图形表示观察到的图像。然后提出了一种基于像素序列的基于马尔可夫随机场(MRF)模型的图像分割方法。与以前的基于区域和基于像素的分割方法的工作相比,本方法对它们进行了一些显着的改进。首先,将一组重要的像素和边缘属性引入到像素表示中。将这些属性集成到MRF模型和贝叶斯框架中,以获得基于加权象素的算法。其次,提出了一种良好的像素表示的判据,提出了一种快速的QuadTree组合(FQJC)算法来提取良好的像素表示。实验结果表明,与基于像素的方法相比,基于像素的算法性能良好,同时大大降低了计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号