首页> 外文期刊>Pattern recognition letters >GOOD: A global orthographic object descriptor for 3D object recognition and manipulation
【24h】

GOOD: A global orthographic object descriptor for 3D object recognition and manipulation

机译:良好:用于3D对象识别和操纵的全局正交对象描述符

获取原文
获取原文并翻译 | 示例

摘要

Object representation is one of the most challenging tasks in robotics because it must provide reliable information in real-time to enable the robot to physically interact with the objects in its environment. To ensure robustness, a global object descriptor must be computed based on a unique and repeatable object reference frame. Moreover, the descriptor should contain enough information enabling to recognize the same or similar objects seen from different perspectives. This paper presents a new object descriptor named Global Orthographic Object Descriptor (GOOD) designed to be robust, descriptive and efficient to compute and use. We propose a novel sign disambiguation method, for computing a unique reference frame from the eigenvectors obtained through Principal Component Analysis of the point cloud of the target object view captured by a 3D sensor. Three principal orthographic projections and their distribution matrices are computed by exploiting the object reference frame. The descriptor is finally obtained by concatenating the distribution matrices in a sequence determined by entropy and variance features of the projections. Experimental results show that the overall classification performance obtained with GOOD is comparable to the best performances obtained with the state-of-the-art descriptors. Concerning memory and computation time, GOOD clearly outperforms the other descriptors. Therefore, GOOD is especially suited for real-time applications. The estimated object's pose is precise enough for real-time object manipulation tasks. (C) 2016 Elsevier B.V. All rights reserved.
机译:对象表示是机器人技术中最具挑战性的任务之一,因为它必须实时提供可靠的信息,以使机器人能够与其环境中的对象进行物理交互。为了确保鲁棒性,必须基于唯一且可重复的对象参考框架来计算全局对象描述符。此外,描述符应包含足够的信息,以便能够识别从不同角度看到的相同或相似对象。本文提出了一种新的名为全局正交对象描述符(GOOD)的对象描述符,该对象描述符旨在健壮,描述性强,计算和使用高效。我们提出了一种新颖的符号消除歧义的方法,该方法用于从通过3D传感器捕获的目标对象视图的点云的主分量分析获得的特征向量计算唯一参考帧。通过利用对象参考系来计算三个主要的正投影投影及其分布矩阵。最后,通过将分布矩阵按由投影的熵和方差特征确定的序列进行级联来获得描述符。实验结果表明,使用GOOD获得的总体分类性能可与使用最新描述符获得的最佳性能相媲美。关于内存和计算时间,GOOD明显优于其他描述符。因此,GOOD特别适合实时应用。估计的对象姿势足够精确,可用于实时对象操作任务。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号