首页> 外文期刊>Pattern recognition letters >Learning robot tasks with loops from experiences to enhance robot adaptability
【24h】

Learning robot tasks with loops from experiences to enhance robot adaptability

机译:通过体验循环学习机器人任务,以增强机器人适应性

获取原文
获取原文并翻译 | 示例

摘要

Learning robot task models with loops helps to increase both the applicability and the compactness of task knowledge. In the framework of Experience-Based Planning Domains (EBPDs), previously formalized by the authors, an approach was developed for learning and exploiting high-level robot task models (the so-called activity schemata) with loops. The paper focuses on the development of: (i) a method Contiguous Non-overlapping Longest Common Subsequence (CNLCS)-based on the Longest Common Prefix (LCP) array for detecting loops of actions in a robot experience; and (ii) an abstract planner to instanciate a learned task model with loops for solving particular instances of the same task with varying numbers of objects. Demonstrations of this system in both real and simulated environments prove its potentialities. (C) 2017 Elsevier B.V. All rights reserved.
机译:通过循环学习机器人任务模型有助于提高任务知识的适用性和紧凑性。在先前由作者正式确定的基于经验的计划域(EBPD)的框架中,开发了一种方法来学习和利用带有循环的高级机器人任务模型(所谓的活动模式)。本文着重于以下方面的开发:(i)一种基于最长公共前缀(LCP)数组的连续不重叠最长公共子序列(CNLCS)方法,用于检测机器人体验中的动作循环; (ii)一个抽象计划器,用于实例化具有循环的学习型任务模型,以解决具有不同数量对象的同一任务的特定实例。在真实和模拟环境中对该系统的演示都证明了其潜力。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号