首页> 外文期刊>Pattern recognition letters >Local texture patterns for traffic sign recognition using higher order spectra
【24h】

Local texture patterns for traffic sign recognition using higher order spectra

机译:使用高阶光谱的交通标志识别局部纹理图案

获取原文
获取原文并翻译 | 示例

摘要

Traffic sign recognition (TSR) is considered as one of the most important modules of driver assistance system (DAS). It can be used as a decision supporting tool for driver and autonomous vehicles. Eventually, TSR is a large-scale feature learning problem and hence attracted the attention of researchers recently. The essential parameters such as huge training dataset size, recognition accuracy and computational complexity need to be considered while designing a practical TSR system. In this paper, we have used higher order spectra (HOS) coupled with texture based features to develop an efficient TSR model. These features represent the shape and content of the traffic signs clearly. Then a subspace learning method with graph embedding under linear discriminant analysis framework is used to increase the discrimination power between various traffic symbols. As a result the proposed method attained a maximum recognition accuracy of 98.89%. The proposed method is evaluated using two publicly available datasets such as, Belgium traffic sign classification (BTSC) and German traffic sign recognition benchmark (GTSRB). Our experimental results demonstrate that the proposed approach is computationally efficient and shows promising recognition accuracy. (C) 2017 Elsevier B.V. All rights reserved.
机译:交通标志识别(TSR)被认为是驾驶员辅助系统(DAS)的最重要模块之一。它可以用作驾驶员和自动驾驶车辆的决策支持工具。最终,TSR是一个大规模的特征学习问题,因此最近引起了研究人员的关注。设计实用的TSR系统时,必须考虑一些重要参数,例如庞大的训练数据集大小,识别精度和计算复杂性。在本文中,我们使用了高阶光谱(HOS)以及基于纹理的特征来开发有效的TSR模型。这些特征清楚地表示了交通标志的形状和内容。然后,在线性判别分析框架下,采用图嵌入的子空间学习方法,提高了各种交通符号之间的辨别能力。结果,所提出的方法获得了98.89%的最大识别精度。使用两个公共可用的数据集(例如比利时交通标志分类(BTSC)和德国交通标志识别基准(GTSRB))对提出的方法进行了评估。我们的实验结果表明,该方法具有较高的计算效率,并具有良好的识别精度。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2017年第15期|202-210|共9页
  • 作者单位

    Manipal Univ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, Karnataka, India;

    Manipal Univ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, Karnataka, India;

    Manipal Univ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, Karnataka, India;

    Ngee Ann Polytech, Dept Elect & Comp Engn, Clementi 599489, Singapore|SIM Univ, Dept Biomed Engn, Sch Sci & Technol, Clementi 599491, Singapore|Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur 50603, Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Entropy; Graph embedding; Higher order spectra; Intelligent transportation system; Traffic sign recognition;

    机译:熵;图形嵌入;高阶谱;智能交通系统;交通标志识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号