首页> 外文期刊>Pattern recognition letters >Learning arbitrary-shape object detector from bounding-box annotation by searching region-graph
【24h】

Learning arbitrary-shape object detector from bounding-box annotation by searching region-graph

机译:通过搜索区域图从包围盒注释中学习任意形状的物体检测器

获取原文
获取原文并翻译 | 示例

摘要

Arbitrary-shape is argued more precise than bounding-box for object detection. However, an arbitrary shape detector usually requires pixel-level human annotation, which is very expensive and hardly afforded for any real-world application. On the other hand, bounding-box is much easier than pixel-wise segmentation in human labeling. In this paper we aim to realize the arbitrary-shape detection from bounding-box human annotation. To this end, we propose location positiveness, which encodes the information of bounding-box annotation to help obtain region annotation. In addition, we propose two graph-based methods to embed the location positiveness, which enable more accurate model trained from simpler annotation. Experimental results validate the performance of our method. (C) 2016 Elsevier B.V. All rights reserved.
机译:对于物体检测,任意形状被认为比边界框更精确。但是,任意形状的检测器通常需要像素级的人工注释,这非常昂贵且几乎无法用于任何实际应用。另一方面,在人工标记中,边界框比按像素分割要容易得多。在本文中,我们旨在实现基于边界框人类注释的任意形状检测。为此,我们提出位置正则性,它对包围盒注释的信息进行编码,以帮助获得区域注释。此外,我们提出了两种基于图的方法来嵌入位置正值,从而可以从更简单的注释中训练出更准确的模型。实验结果验证了我们方法的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2017年第1期|171-176|共6页
  • 作者单位

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Peoples R China;

    Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Peoples R China;

    Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object localization; Arbitrary-shape; Region annotation; Region-graph;

    机译:对象定位;任意形状;区域标注;区域图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号