首页> 外文期刊>Pattern Analysis and Applications >Tracklet style transfer and part-level feature description for person reidentification in a camera network
【24h】

Tracklet style transfer and part-level feature description for person reidentification in a camera network

机译:Roverlet样式传输和零件级别特征描述在相机网络中的人员重新登记

获取原文
获取原文并翻译 | 示例

摘要

Reidentifying multiple objects in a camera network are a difficult problem, especially when determining whether the same object appears in a different place at a different time, captured by another camera. In this paper, we propose a novel tracklet-based approach for reidentifying objects despite the illumination condition differences that occur at various times of day. A similarity search is performed by comparing part-level object feature descriptions. Tracking in each camera is made by a recurrent neural network, and the matching between cameras is done by using a similarity neural network to obtain an output in the form of a similarity score. Our approach consists of two main phases. In the first phase, preprocessing is performed through the transfer of tracklets from several cameras. This process generates more samples from each camera, which is beneficial for training. In the second phase, the object definition is applied, which considers appearance information, temporal information and the similarity calculation, hence making object reidentification easier. We have analyzed the proposed strategy when applied to pedestrian reidentification databases in comparison with state-of-the-art work to prove its robustness.
机译:在相机网络中重新确定多个对象是一个难题,特别是当确定同一对象是否出现在不同时间的不同位置时,由另一个相机捕获。在本文中,我们提出了一种新的基于轨道的方法,即可重新凝聚对象,尽管在各一天的不同时间发生的照明条件差异。通过比较部分级对象特征描述来执行相似性搜索。在每个相机中跟踪由反复性神经网络进行,并且通过使用相似性神经网络来完成相机之间的匹配以以相似度分数的形式获得输出。我们的方法包括两个主要阶段。在第一阶段中,通过从几个摄像机的转向来执行预处理。该过程从每个相机产生更多样本,这有利于培训。在第二阶段,应用对象定义,其考虑外观信息,时间信息和相似性计算,因此使对象重新凝视更容易。与最先进的工作相比,我们分析了拟议的策略,以便与最先进的工作证明其稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号