首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Camera Compensation Using a Feature Projection Matrix for Person Reidentification
【24h】

Camera Compensation Using a Feature Projection Matrix for Person Reidentification

机译:使用特征投影矩阵进行人像识别的摄像机补偿

获取原文
获取原文并翻译 | 示例

摘要

Matching individuals within a group of spatially nonoverlapping surveillance cameras, also known as person reidentification, has recently attracted a lot of research interest. Current methods mainly focus on feature representation or distance measure, which directly compare person images captured by different cameras. However, it is still a problem because of various surveillance conditions; for example, view switching, lighting variations, and image scaling. Although the brightness transfer function was proposed to address the problem of illumination variation, it could not handle view and scale changes among various cameras. In this paper, we propose a new approach to compensate for the inconsistency of feature distributions of person images captured by different cameras. More precisely, a feature projection matrix (FPM) is learned to project image features of one camera to the feature space of another camera, from which the latent device difference can be effectively eliminated for the person reidentification task. In particular, we formulate the FPM learning as a smooth unconstrained convex optimization problem and use a simple gradient descent algorithm with stochastic samples to accelerate the solving process. Extensive comparative experiments conducted on three standard datasets have shown the promising prospect of the proposed method.
机译:在一组空间不重叠的监视相机中对个人进行匹配(也称为人识别)最近引起了很多研究兴趣。当前的方法主要集中于特征表示或距离测量,其直接比较不同相机捕获的人物图像。然而,由于各种监视条件,这仍然是一个问题。例如,视图切换,照明变化和图像缩放。尽管提出了亮度传递函数来解决照明变化的问题,但它无法处理各种相机之间的视图和比例变化。在本文中,我们提出了一种新的方法来补偿由不同相机捕获的人物图像的特征分布的不一致。更准确地说,学习了一个特征投影矩阵(FPM),可以将一个摄像机的图像特征投影到另一个摄像机的特征空间,从中可以有效地消除潜在的设备差异以实现人员重新识别任务。特别是,我们将FPM学习公式化为光滑的无约束凸优化问题,并使用带有随机样本的简单梯度下降算法来加速求解过程。在三个标准数据集上进行的广泛比较实验表明,该方法具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号