首页> 外文期刊>Pattern Analysis and Applications >A scalable solution to the nearest neighbor search problem through local-search methods on neighbor graphs
【24h】

A scalable solution to the nearest neighbor search problem through local-search methods on neighbor graphs

机译:通过邻居图上的本地搜索方法将最近邻搜索问题的可扩展解决方案

获取原文
获取原文并翻译 | 示例

摘要

Nearest neighbor search is a powerful abstraction for data access; however, data indexing is troublesome even for approximate indexes. For intrinsically high-dimensional data, high-quality fast searches demand either indexes with impractically large memory usage or preprocessing time. In this paper, we introduce an algorithm to solve a nearest-neighbor query q by minimizing a kernel function defined by the distance from q to each object in the database. The minimization is performed using metaheuristics to solve the problem rapidly; even when some methods in the literature use this strategy behind the scenes, our approach is the first one using it explicitly. We also provide two approaches to select edges in the graph's construction stage that limit memory footprint and reduce the number of free parameters simultaneously. We carry out a thorough experimental comparison with state-of-the-art indexes through synthetic and real-world datasets; we found out that our contributions achieve competitive performances regarding speed, accuracy, and memory in almost any of our benchmarks.
机译:最近的邻居搜索是数据访问的强大抽象;但是,即使对于近似索引,数据索引也是麻烦的。对于本质上的高维数据,高质量的快速搜索需求具有不切实际的内存使用或预处理时间的索引。在本文中,我们通过最小化从Q到数据库中的每个对象的距离定义的内核函数来介绍求解最近邻查询的算法。最小化使用Metaheuristics进行迅速解决问题;即使在文献中的某些方法使用幕后使用这种策略,我们的方法也是第一个明确使用它的方法。我们还提供两种方法来选择图形的施工阶段中的边缘,这些施工阶段限制内存占用并同时减少自由参数的数量。我们通过合成和现实世界数据集进行了与最先进的指标进行了彻底的实验比较;我们发现,我们的贡献在几乎所有基准测试中都可以实现有关速度,准确性和记忆的竞争性表现。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2021年第2期|763-777|共15页
  • 作者单位

    CONACyT INFOTEC Ctr Invest & Innovac Tecnol Infor Circuito Tecnopolo 112 Aguascalientes 20313 Aguascalientes Mexico;

    CONACyT CentroGEO Ctr Invest Geog & Geomat Ing Jo Circuito Tecnopolo Norte 117 Aguascalientes 20313 Aguascalientes Mexico;

    Ctr Invest Cient & Educ Super Ensenada Ensenada Baja California Mexico;

    CONACyT INFOTEC Ctr Invest & Innovac Tecnol Infor Circuito Tecnopolo 112 Aguascalientes 20313 Aguascalientes Mexico;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nearest neighbor search; Metric search with heuristics; Combinatorial optimization;

    机译:最近的邻居搜索;使用启发式测量来搜索;组合优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号