首页> 外文期刊>Pattern Analysis and Applications >An over-regression suppression method to discriminate occluded objects of same category
【24h】

An over-regression suppression method to discriminate occluded objects of same category

机译:一种过回归抑制方法,以区分相同类别的遮挡物体

获取原文
获取原文并翻译 | 示例

摘要

Abstract Occlusion is a key challenge in object detection. It is hard to discriminate objects accurately when they gather together and occlude each other, especially when they belong to same category which easily leads to the problem that multiple objects are regressed into the same bounding box. To address this problem, an over-regression suppression (ORS) method is proposed to take full advantage of supervised information. Firstly, annotated information is utilized to compute the overlaps between different ground truth boxes. Then, the regression loss function is redesigned by adding a penalty term which is associated with the aforementioned overlaps to prevent Over-regression. Finally, the validity of the algorithm is proved by making some changes in Faster R-CNN, in which a k-means ++ clustering algorithm is used to automatically generate various size anchors by learning the shape regularities of objects from dataset, and the Soft-NMS, a nearly cost-free method, is introduced to replace the traditional NMS. Extensive evaluations on the challenging PASCAL VOC and MS COCO benchmarks demonstrate the superiority of ORS in handling intra-class occlusion. Its performance increases when dataset contains more large objects and hard samples, as demonstrated by the results on the MS COCO dataset.
机译:摘要闭塞是对象检测中的关键挑战。当它们聚集在一起并互相遮挡时,难以辨别对象,特别是当它们属于相同的类别时,它们容易导致多个对象将回归到相同的边界框中的问题。为了解决这个问题,建议过回归抑制(或)方法来充分利用监督信息。首先,利用注释信息来计算不同地面真相框之间的重叠。然后,通过添加与上述重叠相关联的惩罚项来重新设计回归损失函数以防止过回归。最后,通过在更快的R-CNN中进行一些变化来证明算法的有效性,其中用于通过从数据集中学习物体的形状规则和软件来自动生成各种大小锚点的k-means ++聚类算法。 - 介绍了一种近乎成本的方法,以取代传统的NMS。对挑战性Pascal VOC和MS COCO基准的广泛评估证明了处理级别闭塞的优越性或者。当数据集包含更多大型对象和硬样品时,其性能会增加,如MS Coco DataSet上的结果所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号