首页> 外文期刊>Pattern Analysis and Applications >Transductive multi-label learning from missing data using smoothed rank function
【24h】

Transductive multi-label learning from missing data using smoothed rank function

机译:使用平滑等级函数从缺失数据的转换多标签学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose two new algorithms for transductive multi-label learning from missing data. In transductive matrix completion (MC), the challenge is prediction while the data matrix is partially observed. The joint MC and prediction tasks are addressed simultaneously to enhance accuracy in comparison with separate tackling of each. In this setting, the labels to be predicted are modeled as missing entries inside a stacked matrix along the feature-instance data. Assuming the data matrix is of low rank, we propose a new recommendation method for transductive MC by posing the problem as a minimization of the smoothed rank function with non-affine constraints, rather than its convex surrogate. We provide convergence analysis for the proposed algorithms and illustrate their low computational complexity and robustness in comparison with other methods. The simulations are conducted on well-known real datasets in two different scenarios of randomly missing pattern with and without block-loss. The simulations reveal our methods accuracy is superior to state-of-the-art methods up to 10% in low observation rates for the scenario without block-loss. The accuracy of the proposed methods in the scenario with block-loss is comparable to the state-of-the-art while the complexity is reduced up to four times.
机译:在本文中,我们提出了两个用于缺失数据的转换多标签学习的新算法。在转换矩阵完成(MC)中,在部分观察到数据矩阵时,挑战是预测的。联合MC和预测任务同时解决,以增强与每个单独处理相比的准确性。在此设置中,要预测的标签将被建模为沿着特征实例数据的堆叠矩阵内的缺失条目。假设数据矩阵是低秩的,我们提出了一种新推荐方法,用于通过将问题构成为具有非仿射约束的平滑等级函数的最小化而不是其凸代替代的问题。我们为所提出的算法提供会聚分析,并说明与其他方法相比的低计算复杂性和鲁棒性。模拟在具有和没有块损耗的随机缺失模式的两个不同场景中进行了众所周知的实际数据集。仿真揭示了我们的方法精度优于最先进的方法,在没有阻挡损失的情况下的低观察率的最终方法高达10%。具有块损耗的情况下所提出的方法的准确性与现有技术相当,而复杂性降低了四倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号