...
首页> 外文期刊>Image and Vision Computing >Robust hashing for multi-view data: Jointly learning low-rank kernelized similarity consensus and hash functions
【24h】

Robust hashing for multi-view data: Jointly learning low-rank kernelized similarity consensus and hash functions

机译:针对多视图数据的鲁棒散列:共同学习低秩的核化相似性共识和散列函数

获取原文
获取原文并翻译 | 示例
           

摘要

Learning hash functions/codes for similarity search over multi-view data is attracting increasing attention, where similar hash codes are assigned to the data objects characterizing consistently neighborhood relationship across views. Traditional methods in this category inherently suffer three limitations: 1) they commonly adopt a two-stage scheme where similarity matrix is first constructed, followed by a subsequent hash function learning; 2) these methods are commonly developed on the assumption that data samples with multiple representations are noise-free,which is not practical in real-life applications; and 3) they often incur cumbersome training model caused by the neighborhood graph construction using all N points in the database (O(N)). In this paper, we motivate the problem of jointly and efficiently training the robust hash functions over data objects with multi-feature representations which may be noise corrupted. To achieve both the robustness and training efficiency, we propose an approach to effectively and efficiently learning low-rank kemelizedl hash functions shared across views. Specifically, we utilize landmark graphs to construct tractable similarity matrices in multi-views to automatically discover neighborhood structure in the data. To learn robust hash functions, a latent low-rank kernel function is used to construct hash functions in order to accommodate linearly inseparable data. In particular, a latent kernelized similarity matrix is recovered by rank minimization on multiple kernel-based similarity matrices. Extensive experiments on real-world multi-view datasets validate the efficacy of our method in the presence of error corruptions. We use kernelized similarity rather than kernel, as it is not a squared symmetric matrix for data-landmark affinity matrix. (C) 2016 Elsevier B.V. All rights reserved.
机译:学习用于在多视图数据上进行相似性搜索的哈希函数/代码正引起越来越多的关注,其中将相似的哈希码分配给数据对象,以表征跨视图的一致邻居关系。该类别中的传统方法固有地具有三个局限性:1)他们通常采用两阶段方案,首先构造相似矩阵,然后进行后续的哈希函数学习; 2)这些方法通常是在假设具有多种表示形式的数据样本无噪声的前提下开发的,这在实际应用中是不实际的; 3)他们经常会因使用数据库中的所有N点(O(N))构造邻域图而导致麻烦的训练模型。在本文中,我们提出了在具有多特征表示的数据对象上联合并有效地训练鲁棒哈希函数的问题,这些表示可能会受到噪声破坏。为了实现鲁棒性和训练效率,我们提出了一种方法,可以有效地学习在视图之间共享的低阶kemelizedl哈希函数。具体来说,我们利用地标图在多视图中构造可处理的相似性矩阵,以自动发现数据中的邻域结构。为了学习健壮的哈希函数,潜在的低阶内核函数用于构造哈希函数,以适应线性不可分割的数据。特别地,通过在多个基于核的相似性矩阵上的秩最小化来恢复潜在的核化相似性矩阵。在现实世界中的多视图数据集上进行的大量实验验证了我们在存在错误错误的情况下该方法的有效性。我们使用核化的相似度而不是核,因为它不是数据地标亲和力矩阵的平方对称矩阵。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Image and Vision Computing》 |2017年第1期|58-66|共9页
  • 作者

    Wu Lin; Wang Yang;

  • 作者单位

    Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia|Australian Ctr Robot Vis, Brisbane, Qld, Australia;

    Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multiple feature learning; Robust hashing; Low-rank recovery;

    机译:多特征学习;鲁棒哈希;低秩恢复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号