首页> 外文OA文献 >Facial action unit recognition under incomplete data based on multi-label learning with missing labels
【2h】

Facial action unit recognition under incomplete data based on multi-label learning with missing labels

机译:基于多标签学习与缺失标签的不完整数据下的面部动作单位识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Facial action unit (AU) recognition has been applied in a wild range of fields, and has attracted great attention in the past two decades. Most existing works on AU recognition assumed that the complete label assignment for each training image is available, which is often not the case in practice. Labeling AU is expensive and time consuming process. Moreover, due to the AU ambiguity and subjective difference, some AUs are difficult to label reliably and confidently. Many AU recognition works try to train the classifier for each AU independently, which is of high computation cost and ignores the dependency among different AUs. In this work, we formulate AU recognition under incomplete data as a multi-label learning with missing labels (MLML) problem. Most existing MLML methods usually employ the same features for all classes. However, we find this setting is unreasonable in AU recognition, as the occurrence of different AUs produce changes of skin surface displacement or face appearance in different face regions. If using the shared features for all AUs, much noise will be involved due to the occurrence of other AUs. Consequently, the changes of the specific AUs cannot be clearly highlighted, leading to the performance degradation. Instead, we propose to extract the most discriminative features for each AU individually, which are learned by the supervised learning method. The learned features are further embedded into the instance-level label smoothness term of our model, which also includes the label consistency and the class-level label smoothness. Both a global solution using st-cut and an approximated solution using conjugate gradient (CG) descent are provided. Experiments on both posed and spontaneous facial expression databases demonstrate the superiority of the proposed method in comparison with several state-of-the-art works.
机译:面部行动单位(AU)识别已在野生场范围内应用,并在过去的二十年中引起了极大的关注。 AU识别上的大多数现有工作都假定为每个训练图像的完整标签分配可用,这通常不是实践中的情况。标记AU是昂贵且耗时的过程。此外,由于AU模糊和主观差异,一些难度难以可靠和自信地标记。许多AU识别工作都尝试独立地培训每个AU的分类器,这是高计算成本并忽略不同AU之间的依赖性。在这项工作中,我们在不完整数据下制定AU识别作为缺少标签(MLML)问题的多标签学习。大多数现有的MLML方法通常为所有类使用相同的功能。但是,我们发现这种环境在AU识别中是不合理的,因为不同的AUS的发生在不同面积中产生皮肤表面位移或面部外观的变化。如果使用所有AU的共享功能,由于其他AUS的发生,将涉及许多噪声。因此,无法清楚地突出特定AU的变化,从而导致性能下降。相反,我们建议单独提取每个AU的最辨别特征,这些功能由监督学习方法学习。学习的功能进一步嵌入到模型的实例级标签平滑项中,这也包括标签一致性和类级标签平滑度。提供了使用使用缀合物梯度(CG)下降的ST-CUT和近似解的全局解决方案。构成和自发面部表情数据库的实验表明了与若干最先进的工作相比的提出方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号