首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency
【24h】

Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency

机译:半监督的语义分割,具有高和低级别的一致性

获取原文
获取原文并翻译 | 示例

摘要

The ability to understand visual information from limited labeled data is an important aspect of machine learning. While image-level classification has been extensively studied in a semi-supervised setting, dense pixel-level classification with limited data has only drawn attention recently. In this work, we propose an approach for semi-supervised semantic segmentation that learns from limited pixel-wise annotated samples while exploiting additional annotation-free images. The proposed approach relies on adversarial training with a feature matching loss to learn from unlabeled images. It uses two network branches that link semi-supervised classification with semi-supervised segmentation including self-training. The dual-branch approach reduces both the low-level and the high-level artifacts typical when training with few labels. The approach attains significant improvement over existing methods, especially when trained with very few labeled samples. On several standard benchmarks-PASCAL VOC 2012, PASCAL-Context, and Cityscapes-the approach achieves new state-of-the-art in semi-supervised learning.
机译:理解有限标记数据的视觉信息的能力是机器学习的一个重要方面。虽然在半监督设置中已经广泛研究了图像级分类,但最近只引起了具有有限数据的密集像素级分类。在这项工作中,我们提出了一种关于半监督语义分割的方法,这些语义分割从有限的像素 - 明智的注释样本中学习,同时利用额外的注释图像。拟议的方法依赖于对抗的反对派培训,以特征匹配丢失来从未标记的图像中学习。它使用两个网络分支链接半监督分类,半监督分段包括自培训。双分支方法在用少数标签训练时典型的低级和高级伪影。该方法对现有方法进行了重大改善,特别是当培训时用极少数标记的样品训练。在若干标准基准 - Pascal VOC 2012,Pascal-Context和Citycapes - 该方法在半监督学习中实现了新的最先进的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号