首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning with Privileged Information via Adversarial Discriminative Modality Distillation
【24h】

Learning with Privileged Information via Adversarial Discriminative Modality Distillation

机译:通过对抗鉴别模态蒸馏学习特权信息

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous data modalities can provide complementary cues for several tasks, usually leading to more robust algorithms and better performance. However, while training data can be accurately collected to include a variety of sensory modalities, it is often the case that not all of them are available in real life (testing) scenarios, where a model has to be deployed. This raises the challenge of how to extract information from multimodal data in the training stage, in a form that can be exploited at test time, considering limitations such as noisy or missing modalities. This paper presents a new approach in this direction for RGB-D vision tasks, developed within the adversarial learning and privileged information frameworks. We consider the practical case of learning representations from depth and RGB videos, while relying only on RGB data at test time. We propose a new approach to train a hallucination network that learns to distill depth information via adversarial learning, resulting in a clean approach without several losses to balance or hyperparameters. We report state-of-the-art results for object classification on the NYUD dataset, and video action recognition on the largest multimodal dataset available for this task, the NTU RGB+D, as well as on the Northwestern-UCLA.
机译:异构数据模型可以为几个任务提供互补线索,通常导致更强大的算法和更好的性能。然而,在可以准确收集训练数据以包括各种感官模态,而且通常情况下,并非所有这些都可以在现实生活(测试)方案中提供,其中必须部署模型。这提高了如何在训练阶段中的多模式数据中提取信息的挑战,以可以在测试时间被剥削的形式,考虑到诸如嘈杂或缺少的模式等限制。本文在对逆势学习和特权信息框架内开发的RGB-D视觉任务的这种方向上具有新的方法。我们考虑从深度和RGB视频学习陈述的实际情况,同时仅在测试时间依赖RGB数据。我们提出了一种新的方法来培训一种幻觉网络,该网络学会通过对抗学习蒸馏深度信息,从而产生清洁的方法,没有几个损失来平衡或普遍存在。我们向Nyud DataSet上的对象分类报告最先进的结果,以及在可用于此任务的最大多模式数据集上的视频操作识别,NTU RGB + D以及Northwestern-UCLA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号