首页> 外文期刊>IEEE Transactions on Image Processing >Discriminative Multi-View Privileged Information Learning for Image Re-Ranking
【24h】

Discriminative Multi-View Privileged Information Learning for Image Re-Ranking

机译:图像重新排名的判别多视图特权信息学习

获取原文
获取原文并翻译 | 示例

摘要

Conventional multi-view re-ranking methods usually perform asymmetrical matching between the region of interest (ROI) in the query image and the whole target image for similarity computation. Due to the inconsistency in the visual appearance, this practice tends to degrade the retrieval accuracy particularly when the image ROI, which is usually interpreted as the image objectness, accounts for a smaller region in the image. Since Privileged Information (PI), which can be viewed as the image prior, is able to characterize well the image objectness, we are aiming at leveraging PI for further improving the performance of multi-view re-ranking in this paper. Towards this end, we propose a discriminative multi-view re-ranking approach in which both the original global image visual contents and the local auxiliary PI features are simultaneously integrated into a unified training framework for generating the latent subspaces with sufficient discriminating power. For the on-the-fly re-ranking, since the multi-view PI features are unavailable, we only project the original multi-view image representations onto the latent subspace, and thus the re-ranking can be achieved by computing and sorting the distances from the multi-view embeddings to the separating hyperplane. Extensive experimental evaluations on the two public benchmarks, Oxford5k and Paris6k, reveal that our approach provides further performance boost for accurate image re-ranking, whilst the comparative study demonstrates the advantage of our method against other multi-view re-ranking methods.
机译:传统的多视图重新排序方法通常在查询图像中的感兴趣区域(ROI)和整个目标图像以进行相似性计算之间的不对称匹配。由于视觉外观的不一致,这种做法倾向于降低检索精度,特别是当通常被解释为图像对象时的图像ROI时,该图像ROI考虑图像中的较小区域。由于可以在先前将其视为图像的特权信息(PI),能够粗略地表征图像对象,我们旨在利用PI来进一步提高本文中的多视图重新排名的性能。为此,我们提出了一种判别的多视图重新排序方法,其中原始全局图像视觉内容和本地辅助PI特征同时集成到统一的训练框架中,用于产生具有足够辨别力的潜在子空间。对于在线重新排名,由于多视图PI功能不可用,因此我们只将原始的多视图图像表示项目投影到潜伏子空间上,因此可以通过计算和排序来实现重新排序从多视图嵌入到分离超平面的距离。对两台公共基准,牛津5K和巴黎6K的广泛实验评估表明,我们的方法提供了进一步的性能提升,用于准确的图像重新排名,而比较研究表明我们对其他多视图重新排名方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号