首页> 外文期刊>Neurocomputing >Multi-view transfer learning with privileged learning framework
【24h】

Multi-view transfer learning with privileged learning framework

机译:具有特权学习框架的多视图迁移学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a multi-view transfer learning model named Multi-view Transfer Discriminative Model (MTDM) for both image and text classification tasks. Transfer learning, which aims to learn a robust classifier for the target domain using data from a different distribution, has been proved to be effective in many real-world applications. However, most of the existing transfer learning methods map across domain data into a high-dimension space which the distance between domains is closed. This strategy always fails in the multi-view scenario. On the contrary, the multi-view learning methods are also difficult to extend in the transfer learning settings. One of our goals in this paper is to develop a model which can perform better in both multi-view and transfer learning settings. On the one hand, the problem of multi-view is implemented by the paradigm of learning using privileged information (LUPI), which could guarantee the principle of complementary and consensus. On the other hand, the model adequately utilizes the source domain data to build a robust classifier for the target domain. We evaluate our model on both image and text classification tasks and show the effectiveness compared with other baseline approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们针对图像和文本分类任务提出了一种名为多视图传输判别模型(MTDM)的多视图传输学习模型。事实证明,转移学习旨在使用来自不同分布的数据为目标域学习可靠的分类器,在许多实际应用中都是有效的。但是,大多数现有的转移学习方法将跨域数据映射到一个高维空间,域之间的距离是封闭的。在多视图方案中,此策略总是失败。相反,多视图学习方法也难以在转移学习设置中扩展。本文的目标之一是开发一种在多视图和转移学习设置中都能表现更好的模型。一方面,多视角问题是通过使用特权信息(LUPI)进行学习的范例来实现的,这可以保证互补和共识的原则。另一方面,该模型充分利用了源域数据来为目标域构建鲁棒的分类器。我们评估了我们在图像和文本分类任务上的模型,并显示了与其他基线方法相比的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|131-142|共12页
  • 作者单位

    Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China;

    Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100090, Peoples R China|Chinese Aacdemy Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China|Chinese Aacdemy Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China;

    Beijing Union Univ, Dept Basic Course Teaching, Beijing 100101, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view learning; Transfer learning; Learning using privileged information; Support vector machine;

    机译:多视图学习;转移学习;使用特权信息学习;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号