首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Adversarial Distillation for Learning with Privileged Provisions
【24h】

Adversarial Distillation for Learning with Privileged Provisions

机译:对特权规定学习的对抗性蒸馏

获取原文
获取原文并翻译 | 示例

摘要

Knowledge distillation aims to train a student (model) for accurate inference in a resource-constrained environment. Traditionally, the student is trained by a high-capacity teacher (model) whose training is resource-intensive. The student trained this way is suboptimal because it is difficult to learn the real data distribution from the teacher. To address this issue, we propose to train the student against a discriminator in a minimax game. Such a minimax game has an issue that it can take an excessively long time for the training to converge. To address this issue, we propose adversarial distillation consisting of a student, a teacher, and a discriminator. The discriminator is now a multi-class classifier that distinguishes among the real data, the student, and the teacher. The student and the teacher aim to fool the discriminator via adversarial losses, while they learn from each other via distillation losses. By optimizing the adversarial and the distillation losses simultaneously, the student and the teacher can learn the real data distribution. To accelerate the training, we propose to obtain low-variance gradient updates from the discriminator using a Gumbel-Softmax trick. We conduct extensive experiments to demonstrate the superiority of the proposed adversarial distillation under both accuracy and training speed.
机译:知识蒸馏旨在培训学生(模型)以准确推断在资源受限的环境中。传统上,学生受到高容量教师(模型)的培训,其培训是资源密集型的。学生训练这种方式是次优,因为很难学习来自老师的真实数据分布。为了解决这个问题,我们建议将学生训练在最低限度游戏中的判别者。这种最小游戏有一个问题,即它可能需要一个过长的时间才能培训收敛。为了解决这个问题,我们提出了由学生,教师和鉴别者组成的对抗性蒸馏。鉴别者现在是一个多级分类器,可区分真实数据,学生和老师。学生和老师的目标是通过对抗性损失来欺骗歧视者,而他们通过蒸馏损失彼此学习。通过同时优化对抗性和蒸馏损失,学生和教师可以学习真实的数据分布。为了加速培训,我们建议使用Gumbel-SoftMax技巧从鉴别器中获取低方差渐变更新。我们进行广泛的实验,以证明在精度和训练速度下提出的普遍蒸馏的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号