首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Semi-Supervised Adversarial Monocular Depth Estimation
【24h】

Semi-Supervised Adversarial Monocular Depth Estimation

机译:半监督逆势单眼深度估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of monocular depth estimation when only a limited number of training image-depth pairs are available. To achieve a high regression accuracy, the state-of-the-art estimation methods rely on CNNs trained with a large number of image-depth pairs, which are prohibitively costly or even infeasible to acquire. Aiming to break the curse of such expensive data collections, we propose a semi-supervised adversarial learning framework that only utilizes a small number of image-depth pairs in conjunction with a large number of easily-available monocular images to achieve high performance. In particular, we use one generator to regress the depth and two discriminators to evaluate the predicted depth, i.e., one inspects the image-depth pair while the other inspects the depth channel alone. These two discriminators provide their feedbacks to the generator as the loss to generate more realistic and accurate depth predictions. Experiments show that the proposed approach can (1) improve most state-of-the-art models on the NYUD v2 dataset by effectively leveraging additional unlabeled data sources; (2) reach state-of-the-art accuracy when the training set is small, e.g., on the Make3D dataset; (3) adapt well to an unseen new dataset (Make3D in our case) after training on an annotated dataset (KITTI in our case).
机译:在本文中,我们解决了只有有限数量的训练图像深度对时单曲深度估计问题。为了实现高回归精度,最先进的估计方法依赖于具有大量图像深度对训练的CNN,这是昂贵的俯视甚至不可行的。旨在打破这种昂贵的数据收集的诅咒,我们提出了一种半监督的对抗性学习框架,该框架仅利用少量的图像深度对,与大量易用的单眼图像结合以实现高性能。特别地,我们使用一个生成器来回归深度和两个鉴别器来评估预测深度,即,一个人检查图像深度对,而另一个则检查图像深度对。这两个鉴别器将其反馈提供给发电机作为丢失,以产生更现实和准确的深度预测。实验表明,通过有效地利用额外的未标记的数据来源,所提出的方法可以(1)改善Nyud V2数据集上的最先进模型; (2)当训练集很小时达到最先进的准确性,例如,在Make3D数据集上; (3)在注释数据集(在我们的案例中的Kitti)培训后,适应未经调整的新数据集(在我们的案例中的Make3d)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号