首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Ranking-Preserving Cross-Source Learning for Image Retargeting Quality Assessment
【24h】

Ranking-Preserving Cross-Source Learning for Image Retargeting Quality Assessment

机译:对图像复按分质量评估的排名保存跨源学习

获取原文
获取原文并翻译 | 示例

摘要

Image retargeting techniques adjust images into different sizes and have attracted much attention recently. Objective quality assessment (OQA) of image retargeting results is often desired to automatically select the best results. Existing OQA methods train a model using some benchmarks (e.g., RetargetMe), in which subjective scores evaluated by users are provided. Observing that it is challenging even for human subjects to give consistent scores for retargeting results of different source images (diff-source-results), in this paper we propose a learning-based OQA method that trains a General Regression Neural Network (GRNN) model based on relative scores-which preserve the ranking-of retargeting results of the same source image (same-source-results). In particular, we develop a novel training scheme with provable convergence that learns a common base scalar for same-source-results. With this source specific offset, our computed scores not only preserve the ranking of subjective scores for same-source-results, but also provide a reference to compare the diff-source-results. We train and evaluate our GRNN model using human preference data collected in RetargetMe. We further introduce a subjective benchmark to evaluate the generalizability of different OQA methods. Experimental results demonstrate that our method outperforms ten representative OQA methods in ranking prediction and has better generalizability to different datasets.
机译:图像复按分技术将图像调整为不同的大小,并最近引起了很多关注。客观质量评估(OQA)通常希望自动选择最佳结果。现有的OQA方法使用一些基准(例如,RetargetMe)培训模型,其中提供用户评估的主观评分。观察到甚至人类受试者甚至挑战,以提供不同源图像的重新靶出结果(差异源 - 结果)的一致分数,本文提出了一种基于学习的OQA方法,该方法列举了一般回归神经网络(GRNN)模型基于相对分数 - 保留相同源图像(相同源图像)的排名 - 重新排列结果。特别是,我们开发了一种新颖的培训方案,具有可提供的融合,可以为同一源结果学习公共基本标量。通过此源特定的偏移量,我们的计算得分不仅为同一源结果保留主观分数的排名,还提供了参考,用于比较差异结果。我们使用Retargetme收集的人偏好数据培训并评估我们的Grnn模型。我们进一步介绍了一个主观基准,以评估不同OQA方法的普遍性。实验结果表明,我们的方法优于排名预测中的十个代表性的OQA方法,并且对不同的数据集具有更好的普遍性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号