【24h】

A validity measure for fuzzy clustering

机译:模糊聚类的有效性度量

获取原文
获取原文并翻译 | 示例

摘要

The authors present a fuzzy validity criterion based on a validity function which identifies compact and separate fuzzy c-partitions without assumptions as to the number of substructures inherent in the data. This function depends on the data set, geometric distance measure, distance between cluster centroids and more importantly on the fuzzy partition generated by any fuzzy algorithm used. The function is mathematically justified via its relationship to a well-defined hard clustering validity function, the separation index for which the condition of uniqueness has already been established. The performance of this validity function compares favorably to that of several others. The application of this validity function to color image segmentation in a computer color vision system for recognition of IC wafer defects which are otherwise impossible to detect using gray-scale image processing is discussed.
机译:作者提出了一种基于有效性函数的模糊有效性标准,该有效性函数可识别紧凑且分离的模糊c分区,而无需假设数据中固有的子结构的数量。此功能取决于数据集,几何距离度量,聚类质心之间的距离,更重要的是取决于使用的任何模糊算法生成的模糊分区。该函数通过其与定义明确的硬聚类有效性函数的关系进行数学证明,该函数已经确定了唯一性条件。该有效性函数的性能优于其他几个性能。讨论了此有效性功能在计算机彩色视觉系统中用于识别IC晶圆缺陷的彩色图像分割中的应用,这些缺陷否则无法使用灰度图像处理进行检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号